| 1. |
Y.
Cao
,
R.
Wu
,
Y.-Y.
Gao
,
Y.
Zhou
,
J.-J.
Zhu
, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks.
Nano-Micro Lett.
16, 37 (
2023).
https://doi.org/10.1007/s40820-023-01249-5
|
| 2. |
J.
Chang
,
C.
Li
,
X.
Wang
,
D.
Li
,
J.
Zhang
et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction.
Nano-Micro Lett.
15, 159 (
2023).
https://doi.org/10.1007/s40820-023-01111-8
|
| 3. |
|
| 4. |
T.
Xue
,
Y.
Yang
,
D.
Yu
,
Q.
Wali
,
Z.
Wang
et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection.
Nano-Micro Lett.
15, 45 (
2023).
https://doi.org/10.1007/s40820-023-01017-5
|
| 5. |
|
| 6. |
W.Y.
Lieu
,
D.
Fang
,
K.J.
Tay
,
X.L.
Li
,
W.C.
Chu
et al., Progress on 3D-printed metal-organic frameworks with hierarchical structures.
Adv. Mater. Technol.
7, 2200023 (
2022).
https://doi.org/10.1002/admt.202200023
|
| 7. |
Y.
Li
,
G.
Wen
,
J.
Li
,
Q.
Li
,
H.
Zhang
et al., Synthesis and shaping of metal-organic frameworks: a review.
Chem. Commun.
58, 11488-11506 (
2022).
https://doi.org/10.1039/d2cc04190a
|
| 8. |
|
| 9. |
|
| 10. |
L.
Zeng
,
S.
Ling
,
D.
Du
,
H.
He
,
X.
Li
et al., Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview.
Adv. Sci.
10, e2303716 (
2023).
https://doi.org/10.1002/advs.202303716
|
| 11. |
|
| 12. |
M.A.S.R.
Saadi
,
A.
Maguire
,
N.T.
Pottackal
,
M.S.H.
Thakur
,
M.M.
Ikram
et al., Direct ink writing: a 3D printing technology for diverse materials.
Adv. Mater.
34, 2108855 (
2022).
https://doi.org/10.1002/adma.202108855
|
| 13. |
J.
Dhainaut
,
M.
Bonneau
,
R.
Ueoka
,
K.
Kanamori
,
S.
Furukawa
, Formulation of metal-organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation.
ACS Appl. Mater. Interfaces
12, 10983-10992 (
2020).
https://doi.org/10.1021/acsami.9b22257
|
| 14. |
R.
Zhou
,
Y.
Wang
,
Z.
Liu
,
Y.
Pang
,
J.
Chen
et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption.
Nano-Micro Lett.
14, 122 (
2022).
https://doi.org/10.1007/s40820-022-00865-x
|
| 15. |
E.
Lahtinen
,
R.L.M.
Precker
,
M.
Lahtinen
,
E.
Hey-Hawkins
,
M.
Haukka
, Selective laser sintering of metal-organic frameworks: production of highly porous filters by 3D printing onto a polymeric matrix.
ChemPlusChem
84, 222-225 (
2019).
https://doi.org/10.1002/cplu.201900081
|
| 16. |
G.
Lipkowitz
,
T.
Samuelsen
,
K.
Hsiao
,
B.
Lee
,
M.T.
Dulay
et al., Injection continuous liquid interface production of 3D objects.
Sci. Adv.
8, eabq3917 (
2022).
https://doi.org/10.1126/sciadv.abq3917
|
| 17. |
N.M.
Larson
,
J.
Mueller
,
A.
Chortos
,
Z.S.
Davidson
,
D.R.
Clarke
et al., Rotational multimaterial printing of filaments with subvoxel control.
Nature
613, 682-688 (
2023).
https://doi.org/10.1038/s41586-022-05490-7
|
| 18. |
|
| 19. |
Z.
Ren
,
L.
Gao
,
S.J.
Clark
,
K.
Fezzaa
,
P.
Shevchenko
et al., Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion.
Science
379, 89-94 (
2023).
https://doi.org/10.1126/science.add4667
|
| 20. |
Z.
Lyu
,
J.
Wang
,
Y.
Chen
, 4D printing: interdisciplinary integration of smart materials, structural design, and new functionality.
Int. J. Extrem. Manuf.
5, 032011 (
2023).
https://doi.org/10.1088/2631-7990/ace090
|
| 21. |
Z.
Lyu
,
J.J.
Koh
,
G.J.H.
Lim
,
D.
Zhang
,
T.
Xiong
et al., Direct ink writing of programmable functional silicone-based composites for 4D printing applications.
Interdiscip. Mater.
1, 507-516 (
2022).
https://doi.org/10.1002/idm2.12027
|
| 22. |
N.
Maldonado
,
P.
Amo-Ochoa
, New promises and opportunities in 3D printable inks based on coordination compounds for the creation of objects with multiple applications.
Chemistry
27, 2887-2907 (
2021).
https://doi.org/10.1002/chem.202002259
|
| 23. |
S.
Mallakpour
,
E.
Azadi
,
C.M.
Hussain
, MOF/COF-based materials using 3D printing technology: applications in water treatment, gas removal, biomedical, and electronic industries.
New J. Chem.
45, 13247-13257 (
2021).
https://doi.org/10.1039/D1NJ02152D
|
| 24. |
E.R.
Kearns
,
R.
Gillespie
,
D.M.
D’Alessandro
, 3D printing of metal-organic framework composite materials for clean energy and environmental applications.
J. Mater. Chem. A
9, 27252-27270 (
2021).
https://doi.org/10.1039/d1ta08777k
|
| 25. |
C.T.
Hsieh
,
K.
Ariga
,
L.K.
Shrestha
,
S.H.
Hsu
, Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks.
Biomacromol
22, 1053-1064 (
2021).
https://doi.org/10.1021/acs.biomac.0c00920
|
| 26. |
L.
Zhang
,
G.
Ng
,
N.
Kapoor-Kaushik
,
X.
Shi
,
N.
Corrigan
et al., 2D porphyrinic metal-organic framework nanosheets as multidimensional photocatalysts for functional materials.
Angew. Chem. Int. Ed.
60, 22664-22671 (
2021).
https://doi.org/10.1002/anie.202107457
|
| 27. |
C.
Li
,
S.
Deng
,
W.
Feng
,
Y.
Cao
,
J.
Bai
et al., A universal room-temperature 3D printing approach towards porous mof based dendrites inhibition hybrid solid-state electrolytes.
Small
19, e2300066 (
2023).
https://doi.org/10.1002/smll.202300066
|
| 28. |
W.
Zhu
,
Z.
Zhou
,
Y.
Huang
,
H.
Liu
,
N.
He
et al., A versatile 3D-printable hydrogel for antichondrosarcoma, antibacterial, and tissue repair.
J. Mater. Sci. Technol.
136, 200-211 (
2023).
https://doi.org/10.1016/j.jmst.2022.07.010
|
| 29. |
S.
Pal
,
Y.-Z.
Su
,
Y.-W.
Chen
,
C.-H.
Yu
,
C.-W.
Kung
et al., 3D printing of metal-organic framework-based ionogels: wearable sensors with colorimetric and mechanical responses.
ACS Appl. Mater. Interfaces
14, 28247-28257 (
2022).
https://doi.org/10.1021/acsami.2c02690
|
| 30. |
A.I.
Cherevko
,
I.A.
Nikovskiy
,
Y.V.
Nelyubina
,
K.M.
Skupov
,
N.N.
Efimov
et al., 3D-printed porous magnetic carbon materials derived from metal-organic frameworks.
Polymers
13, 3881 (
2021).
https://doi.org/10.3390/polym13223881
|
| 31. |
A.K.
Mohammed
,
S.
Usgaonkar
,
F.
Kanheerampockil
,
S.
Karak
,
A.
Halder
et al., Connecting microscopic structures, mesoscale assemblies, and macroscopic architectures in 3D-printed hierarchical porous covalent organic framework foams.
J. Am. Chem. Soc.
142, 8252-8261 (
2020).
https://doi.org/10.1021/jacs.0c00555
|
| 32. |
Z.
Lyu
,
G.J.H.
Lim
,
R.
Guo
,
Z.
Kou
,
T.
Wang
et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O
2batteries.
Adv. Funct. Mater.
29, 1806658 (
2019).
https://doi.org/10.1002/adfm.201806658
|
| 33. |
B.
Yeskendir
,
J.-P.
Dacquin
,
Y.
Lorgouilloux
,
C.
Courtois
,
S.
Royer
et al., From metal-organic framework powders to shaped solids: recent developments and challenges.
Mater. Adv.
2, 7139-7186 (
2021).
https://doi.org/10.1039/d1ma00630d
|
| 34. |
S.
Sultan
,
H.N.
Abdelhamid
,
X.
Zou
,
A.P.
Mathew
, CelloMOF: nanocellulose enabled 3D printing of metal-organic frameworks.
Adv. Funct. Mater.
29, 1805372 (
2019).
https://doi.org/10.1002/adfm.201805372
|
| 35. |
A.D.
Salazar-Aguilar
,
A.
Quintanilla
,
P.
López
,
C.
Martínez
,
S.M.
Vega-Díaz
et al., 3D-printed Fe/γ-Al
2O
3monoliths from MOF-based boehmite inks for the catalytic hydroxylation of phenol.
ACS Appl. Mater. Interfaces
14, 920-932 (
2022).
https://doi.org/10.1021/acsami.1c19755
|
| 36. |
K.A.
Evans
,
Z.C.
Kennedy
,
B.W.
Arey
,
J.F.
Christ
,
H.T.
Schaef
et al., Chemically active, porous 3D-printed thermoplastic composites.
ACS Appl. Mater. Interfaces
10, 15112-15121 (
2018).
https://doi.org/10.1021/acsami.7b17565
|
| 37. |
A.
Pustovarenko
,
B.
Seoane
,
E.
Abou-Hamad
,
H.E.
King
,
B.M.
Weckhuysen
et al., Rapid fabrication of MOF-based mixed matrix membranes through digital light processing.
Mater. Adv.
2, 2739-2749 (
2021).
https://doi.org/10.1039/D1MA00023C
|
| 38. |
H.
Thakkar
,
S.
Eastman
,
Q.
Al-Naddaf
,
A.A.
Rownaghi
,
F.
Rezaei
, 3D-printed metal-organic framework monoliths for gas adsorption processes.
ACS Appl. Mater. Interfaces
9, 35908-35916 (
2017).
https://doi.org/10.1021/acsami.7b11626
|
| 39. |
S.
Lawson
,
M.
Snarzyk
,
D.
Hanify
,
A.A.
Rownaghi
,
F.
Rezaei
, Development of 3D-printed polymer-MOF monoliths for CO
2adsorption.
Ind. Eng. Chem. Res.
59, 7151-7160 (
2020).
https://doi.org/10.1021/acs.iecr.9b05445
|
| 40. |
H.
Thakkar
,
Q.
Al-Naddaf
,
N.
Legion
,
M.
Hovis
,
A.
Krishnamurthy
et al., Adsorption of ethane and ethylene over 3D-printed ethane-selective monoliths.
ACS Sustain. Chem. Eng.
6, 15228-15237 (
2018).
https://doi.org/10.1021/acssuschemeng.8b03685
|
| 41. |
J.
Lefevere
,
B.
Claessens
,
S.
Mullens
,
G.
Baron
,
J.
Cousin-Saint-Remi
et al., 3D-printed zeolitic imidazolate framework structures for adsorptive separations.
ACS Appl. Nano Mater.
2, 4991-4999 (
2019).
https://doi.org/10.1021/acsanm.9b00934
|
| 42. |
B.
Claessens
,
N.
Dubois
,
J.
Lefevere
,
S.
Mullens
,
J.
Cousin-Saint-Remi
et al., 3D-printed ZIF-8 monoliths for biobutanol recovery.
Ind. Eng. Chem. Res.
59, 8813-8824 (
2020).
https://doi.org/10.1021/acs.iecr.0c00453
|
| 43. |
Z.
Lyu
,
G.J.H.
Lim
,
R.
Guo
,
Z.
Pan
,
X.
Zhang
et al., 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability.
Energy Storage Mater.
24, 336-342 (
2020).
https://doi.org/10.1016/j.ensm.2019.07.041
|
| 44. |
M.N.
Channell
,
M.
Sefa
,
J.A.
Fedchak
,
J.
Scherschligt
,
M.
Bible
et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites.
Polym. Adv. Technol.
29, 867-873 (
2018).
https://doi.org/10.1002/pat.4197
|
| 45. |
L.
Zhong
,
J.
Chen
,
Z.
Ma
,
H.
Feng
,
S.
Chen
et al., 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
Nanoscale
12, 24437-24449 (
2020).
https://doi.org/10.1039/d0nr06297a
|
| 46. |
|
| 47. |
F.
Zou
,
J.
Jiang
,
F.
Lv
,
X.
Xia
,
X.
Ma
, Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
J. Nanobiotechnology
18, 39 (
2020).
https://doi.org/10.1186/s12951-020-00594-6
|
| 48. |
R.
Pei
,
L.
Fan
,
F.
Zhao
,
J.
Xiao
,
Y.
Yang
et al., 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal.
J. Hazard. Mater.
384, 121418 (
2020).
https://doi.org/10.1016/j.jhazmat.2019.121418
|
| 49. |
C.A.
Grande
,
R.
Blom
,
V.
Middelkoop
,
D.
Matras
,
A.
Vamvakeros
et al., Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures.
Chem. Eng. J.
402, 126166 (
2020).
https://doi.org/10.1016/j.cej.2020.126166
|
| 50. |
L.
Zhang
,
X.
Shi
,
Z.
Zhang
,
R.P.
Kuchel
,
R.
Namivandi-Zangeneh
et al., Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography.
Angew. Chem. Int. Ed.
60, 5489-5496 (
2021).
https://doi.org/10.1002/anie.202014208
|
| 51. |
T.
Wu
,
Z.
Ma
,
Y.
He
,
X.
Wu
,
B.
Tang
et al., A covalent black phosphorus/metal-organic framework hetero-nanostructure for high-performance flexible supercapacitors.
Angew. Chem. Int. Ed.
60, 10366-10374 (
2021).
https://doi.org/10.1002/anie.202101648
|
| 52. |
J.
Zhao
,
Y.
Zhang
,
H.
Lu
,
Y.
Wang
,
X.D.
Liu
et al., Additive manufacturing of two-dimensional conductive metal-organic framework with multidimensional hybrid architectures for high-performance energy storage.
Nano Lett.
22, 1198-1206 (
2022).
https://doi.org/10.1021/acs.nanolett.1c04367
|
| 53. |
A.J.
Young
,
R.
Guillet-Nicolas
,
E.S.
Marshall
,
F.
Kleitz
,
A.J.
Goodhand
et al., Direct ink writing of catalytically active UiO-66 polymer composites.
Chem. Commun.
55, 2190-2193 (
2019).
https://doi.org/10.1039/C8CC10018G
|
| 54. |
|
| 55. |
Y.
Liu
,
J.
Yang
,
C.
Tao
,
H.
Lee
,
M.
Chen
et al., Meniscus-guided 3D microprinting of pure metal-organic frameworks with high gas-uptake performance.
ACS Appl. Mater. Interfaces
14, 7184-7191 (
2022).
https://doi.org/10.1021/acsami.1c22582
|
| 56. |
M.
Zhang
,
L.
Li
,
Q.
Lin
,
M.
Tang
,
Y.
Wu
et al., Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks.
J. Am. Chem. Soc.
141, 5154-5158 (
2019).
https://doi.org/10.1021/jacs.9b01561
|
| 57. |
H.N.
Abdelhamid
,
S.
Sultan
,
A.P.
Mathew
, 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO
2) and heavy metal ions.
Dalton Trans.
52, 2988-2998 (
2023).
https://doi.org/10.1039/d2dt04168e
|
| 58. |
P.
Scholz
,
A.
Ulbricht
,
Y.
Joshi
,
C.
Gollwitzer
,
S.M.
Weidner
, Microstructure of polymer-imprinted metal-organic frameworks determined by absorption edge tomography.
Int. J. Mater. Res.
111, 55-64 (
2020).
https://doi.org/10.3139/146.111817
|
| 59. |
B.
Chen
,
R.
Davies
,
H.
Chang
,
Y.
Xia
,
Y.
Zhu
et al.,
In-situsynthesis of metal organic frameworks (MOFs)-PA 12 powders and their laser sintering into hierarchical porous lattice structures.
Addit. Manuf.
38, 101774 (
2021).
https://doi.org/10.1016/j.addma.2020.101774
|
| 60. |
S.
Lawson
,
A.-A.
Alwakwak
,
A.A.
Rownaghi
,
F.
Rezaei
, Gel-print-grow: a new way of 3D printing metal-organic frameworks.
ACS Appl. Mater. Interfaces
12, 56108-56117 (
2020).
https://doi.org/10.1021/acsami.0c18720
|
| 61. |
C.
Xu
,
Y.
Ai
,
T.
Zheng
,
C.
Wang
, Acoustic manipulation of breathing MOFs particles for self-folding composite films preparation.
Sens. Actuat. A Phys.
315, 112288 (
2020).
https://doi.org/10.1016/j.sna.2020.112288
|
| 62. |
R.
Li
,
S.
Yuan
,
W.
Zhang
,
H.
Zheng
,
W.
Zhu
et al., 3D printing of mixed matrix films based on metal-organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications.
ACS Appl. Mater. Interfaces
11, 40564-40574 (
2019).
https://doi.org/10.1021/acsami.9b11840
|
| 63. |
X.
Liu
,
G.J.H.
Lim
,
Y.
Wang
,
L.
Zhang
,
D.
Mullangi
et al., Binder-free 3D printing of covalent organic framework (COF) monoliths for CO
2adsorption.
Chem. Eng. J.
403, 126333 (
2021).
https://doi.org/10.1016/j.cej.2020.126333
|
| 64. |
|
| 65. |
T.
Ni
,
Y.
Zhu
,
L.
Hao
,
Y.
Chen
,
T.
Cheng
, Preparation of photothermal-sensitive PDGF@ZIF-8-PDA@COL/PLGA-TCP composite scaffolds for bone defect repair.
Mater. Des.
217, 110643 (
2022).
https://doi.org/10.1016/j.matdes.2022.110643
|
| 66. |
|
| 67. |
Z.
Liu
,
X.
Xia
,
W.
Li
,
L.
Xiao
,
X.
Sun
et al.,
In situgrowth of Ca
2+-based metal-organic framework on CaSiO
3/ABS/TPU 3D skeleton for methylene blue removal.
Materials
13, 4403 (
2020).
https://doi.org/10.3390/ma13194403
|
| 68. |
J.
Yao
,
F.
Dong
,
X.
Xu
,
M.
Wen
,
Z.
Ji
et al., Rational design and construction of monolithic ordered mesoporous Co
3O
4@SiO
2catalyst by a novel 3D printed technology for catalytic oxidation of toluene.
ACS Appl. Mater. Interfaces
14, 22170-22185 (
2022).
https://doi.org/10.1021/acsami.2c03850
|
| 69. |
|
| 70. |
W.
Liu
,
O.
Erol
,
D.H.
Gracias
, 3D printing of an
In situgrown MOF hydrogel with tunable mechanical properties.
ACS Appl. Mater. Interfaces
12, 33267-33275 (
2020).
https://doi.org/10.1021/acsami.0c08880
|
| 71. |
I.
Pellejero
,
F.
Almazán
,
M.
Lafuente
,
M.A.
Urbiztondo
,
M.
Drobek
et al., Functionalization of 3D printed ABS filters with MOF for toxic gas removal.
J. Ind. Eng. Chem.
89, 194-203 (
2020).
https://doi.org/10.1016/j.jiec.2020.05.013
|
| 72. |
S.
Waheed
,
M.
Rodas
,
H.
Kaur
,
N.L.
Kilah
,
B.
Paull
et al.,
In-situgrowth of metal-organic frameworks in a reactive 3D printable material.
Appl. Mater. Today
22, 100930 (
2021).
https://doi.org/10.1016/j.apmt.2020.100930
|
| 73. |
Z.
Shi
,
C.
Xu
,
F.
Chen
,
Y.
Wang
,
L.
Li
et al., Renewable metal-organic-frameworks-coated 3D printing film for removal of malachite green.
RSC Adv.
7, 49947-49952 (
2017).
https://doi.org/10.1039/C7RA10912A
|
| 74. |
J.
Du
,
W.
Liu
,
Z.
Kang
,
B.
Yu
,
D.
Li
et al., Hydrothermal deposition of PCN-224 on 3D-printed porous
β-Ca
2SiO
4scaffolds for bone regeneration.
Adv. Eng. Mater.
24, 2101550 (
2022).
https://doi.org/10.1002/adem.202101550
|
| 75. |
C.
Shu
,
C.
Qin
,
L.
Chen
,
Y.
Wang
,
Z.
Shi
et al., Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration.
Adv. Sci.
10, e2206875 (
2023).
https://doi.org/10.1002/advs.202206875
|
| 76. |
Y.
Ying
,
M.P.
Browne
,
M.
Pumera
, Metal-organic-frameworks on 3D-printed electrodes:
in situelectrochemical transformation towards the oxygen evolution reaction.
Sustain. Energy Fuels
4, 3732-3738 (
2020).
https://doi.org/10.1039/d0se00503g
|
| 77. |
|
| 78. |
S.
Lawson
,
Q.
Al-Naddaf
,
A.
Krishnamurthy
,
M.S.
Amour
,
C.
Griffin
et al., UTSA-16 growth within 3D-printed co-Kaolin monoliths with high selectivity for CO
2/CH
4, CO
2/N
2, and CO
2/H
2separation.
ACS Appl. Mater. Interfaces
10, 19076-19086 (
2018).
https://doi.org/10.1021/acsami.8b05192
|
| 79. |
D.
Liu
,
P.
Jiang
,
X.
Li
,
J.
Liu
,
L.
Zhou
et al., 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation.
Chem. Eng. J.
397, 125392 (
2020).
https://doi.org/10.1016/j.cej.2020.125392
|
| 80. |
|
| 81. |
K.
Li
,
Y. de
Rancourt
,
X.
de Mimérand
,
J.
Jin
,
J.G.
Yi
, Metal oxide (ZnO and TiO
2) and Fe-based metal-organic-framework nanoparticles on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants.
ACS Appl. Nano Mater.
3, 2830-2845 (
2020).
https://doi.org/10.1021/acsanm.0c00096
|
| 82. |
M. del
Rio
,
M.
Villar
,
S.
Quesada
,
G.T.
Palomino
,
L.
Ferrer
et al., Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters.
Appl. Mater. Today
24, 101130 (
2021).
https://doi.org/10.1016/j.apmt.2021.101130
|
| 83. |
A.
Figuerola
,
D.A.V.
Medina
,
A.J.
Santos-Neto
,
C.P.
Cabello
,
V.
Cerdà
et al., Metal-organic framework mixed-matrix coatings on 3D printed devices.
Appl. Mater. Today
16, 21-27 (
2019).
https://doi.org/10.1016/j.apmt.2019.04.011
|
| 84. |
H.S.
Far
,
M.
Najafi
,
M.
Hasanzadeh
,
M.
Rabbani
, Self-supported 3D-printed lattices containing MXene/metal-organic framework (MXOF) composite as an efficient adsorbent for wastewater treatment.
ACS Appl. Mater. Interfaces
14, 44488-44497 (
2022).
https://doi.org/10.1021/acsami.2c13830
|
| 85. |
W.
Wang
,
Y.
Xiong
,
R.
Zhao
,
X.
Li
,
W.
Jia
, A novel hierarchical biofunctionalized 3D-printed porous Ti
6Al
4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation.
J. Nanobiotechnology
20, 68 (
2022).
https://doi.org/10.1186/s12951-022-01277-0
|
| 86. |
H.S.
Far
,
M.
Najafi
,
M.
Hasanzadeh
,
R.
Rahimi
, A 3D-printed hierarchical porous architecture of MOF@clay composite for rapid and highly efficient dye scavenging.
New J. Chem.
46, 23351-23360 (
2022).
https://doi.org/10.1039/D2NJ05188E
|
| 87. |
Y.
Jiang
,
X.
Pan
,
M.
Yao
,
L.
Han
,
X.
Zhang
et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration.
Nano Today
39, 101182 (
2021).
https://doi.org/10.1016/J.NANTOD.2021.101182
|
| 88. |
Q.
Xu
,
Z.
Chen
,
Y.
Zhang
,
X.
Hu
,
F.
Chen
et al., Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the
in vitroassessment of its potential as cranioplasty implants.
J. Mater. Chem. B
10, 3747-3758 (
2022).
https://doi.org/10.1039/d2tb00419d
|
| 89. |
S.
Yuan
,
J.
Zhu
,
Y.
Li
,
Y.
Zhao
,
J.
Li
et al., Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface.
J. Mater. Chem. A
7, 2723-2729 (
2019).
https://doi.org/10.1039/C8TA10249J
|
| 90. |
Z.
Wang
,
J.
Wang
,
M.
Li
,
K.
Sun
,
C.-J.
Liu
, Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue.
Sci. Rep.
4, 5939 (
2014).
https://doi.org/10.1038/srep05939
|
| 91. |
W.
Dang
,
B.
Ma
,
B.
Li
,
Z.
Huan
,
N.
Ma
et al., 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction.
Biofabrication
12, 025005 (
2020).
https://doi.org/10.1088/1758-5090/ab5ae3
|
| 92. |
R.
Singh
,
G.
Souillard
,
L.
Chassat
,
Y.
Gao
,
X.
Mulet
et al., Fabricating bioactive 3D metal-organic framework devices.
Adv. Sustain. Syst.
4, 2000059 (
2020).
https://doi.org/10.1002/adsu.202000059
|
| 93. |
L.
Wang
,
S.
Ng
, Jyoti,
M.
Pumera
, Al
2O
3/covalent organic framework on 3D-printed nanocarbon electrodes for enhanced biomarker detection.
ACS Appl. Nano Mater.
5, 9719-9727 (
2022).
https://doi.org/10.1021/acsanm.2c01937
|
| 94. |
|