| 1. |
A
.
Jagadale
,
X
.
Zhou
,
R
.
Xiong
,
D.P
.
Dubal
,
J
.
Xu
et al., Lithium ion capacitors (LICs): development of the materials.
Energy Storage Mater.
19, 314-329 (
2019).
https://doi.org/10.1016/j.ensm.2019.02.031
|
| 2. |
H
.
Gu
,
Y.-E
.
Zhu
,
J
.
Yang
,
J
.
Wei
,
Z
.
Zhou
, Nanomaterials and technologies for lithium-ion hybrid supercapacitors.
ChemNanoMat
2, 578-587 (
2016).
https://doi.org/10.1002/cnma.201600068
|
| 3. |
L
.
Gao
,
D
.
Huang
,
Y
.
Shen
,
M
.
Wang
, Rutile-TiO
2decorated Li
4Ti
5O
12nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors.
J. Mater. Chem. A
3, 23570-23576 (
2015).
https://doi.org/10.1039/C5TA07666H
|
| 4. |
B
.
Li
,
J
.
Zheng
,
H
.
Zhang
,
L
.
Jin
,
D
.
Yang
et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors.
Adv. Mater.
30, 1705670 (
2018).
https://doi.org/10.1002/adma.201705670
|
| 5. |
|
| 6. |
S
.
Weng
,
G
.
Yang
,
S
.
Zhang
,
X
.
Liu
,
X
.
Zhang
et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries.
Nano-Micro Lett.
15, 215 (
2023).
https://doi.org/10.1007/s40820-023-01183-6
|
| 7. |
H
.
Kim
,
M.-Y
.
Cho
,
M.-H
.
Kim
,
K.-Y
.
Park
,
H
.
Gwon
et al., A novel high-energy hybrid supercapacitor with an anatase TiO
2-reduced graphene oxide anode and an activated carbon cathode.
Adv. Energy Mater.
3, 1500-1506 (
2013).
https://doi.org/10.1002/aenm.201300467
|
| 8. |
W
.
Zhu
,
S.A
.
El-Khodary
,
S
.
Li
,
B
.
Zou
,
R
.
Kang
et al., Roselle-like Zn
2Ti
3O
8/rGO nanocomposite as anode for lithium ion capacitor.
Chem. Eng. J.
385, 123881 (
2020).
https://doi.org/10.1016/j.cej.2019.123881
|
| 9. |
S
.
Li
,
J
.
Chen
,
M
.
Cui
,
G
.
Cai
,
J
.
Wang
et al., A high-performance lithium-ion capacitor based on 2D nanosheet materials.
Small
13, 1602893
2017).
https://doi.org/10.1002/smll.201602893
|
| 10. |
Z
.
Xiao
,
J
.
Han
,
H
.
He
,
X
.
Zhang
,
J
.
Xiao
et al., A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity.
Nanoscale
13, 19210-19217 (
2021).
https://doi.org/10.1039/D1NR05618B
|
| 11. |
G
.
Yan
,
X
.
Sun
,
Y
.
Zhang
,
H
.
Li
,
H
.
Huang
et al., Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis.
Nano-Micro Lett.
15, 132 (
2023).
https://doi.org/10.1007/s40820-023-01100-x
|
| 12. |
|
| 13. |
S
.
Wang
,
Q
.
Wang
,
P
.
Shao
,
Y
.
Han
,
X
.
Gao
et al., Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries.
J. Am. Chem. Soc.
139, 4258-4261 (
2017).
https://doi.org/10.1021/jacs.7b02648
|
| 14. |
S
.
Jin
,
O
.
Allam
,
S.S
.
Jang
,
S.W
.
Lee
, Covalent organic frameworks: design and applications in electrochemical energy storage devices.
InfoMat
4, e12277 (
2022).
https://doi.org/10.1002/inf2.12277
|
| 15. |
H
.
Yang
,
S
.
Zhang
,
L
.
Han
,
Z
.
Zhang
,
Z
.
Xue
et al., High conductive two-dimensional covalent organic framework for lithium storage with large capacity.
ACS Appl. Mater. Interfaces
8, 5366-5375 (
2016).
https://doi.org/10.1021/acsami.5b12370
|
| 16. |
W
.
Yan
,
F
.
Yu
,
Y
.
Jiang
,
J
.
Su
,
S.-W
.
Ke
et al., Self-assembly construction of carbon nanotube network-threaded tetrathiafulvalene-bridging covalent organic framework composite anodes for high-performance hybrid lithium-ion capacitors.
Small Struct.
3, 2200126 (
2022).
https://doi.org/10.1002/sstr.202200126
|
| 17. |
Q
.
Geng
,
H
.
Wang
,
J
.
Wang
,
J
.
Hong
,
W
.
Sun
et al., Boosting the capacity of aqueous Li-ion capacitors via pinpoint surgery in nanocoral-like covalent organic frameworks.
Small Methods
6, e2200314 (
2022).
https://doi.org/10.1002/smtd.202200314
|
| 18. |
Y
.
Wang
,
N
.
Chen
,
B
.
Zhou
,
X
.
Zhou
,
B
.
Pu
et al., NH
3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors.
Nano-Micro Lett.
15, 231 (
2023).
https://doi.org/10.1007/s40820-023-01204-4
|
| 19. |
X
.
Xu
,
R
.
Xiong
,
Z
.
Zhang
,
X
.
Zhang
,
C
.
Gu
et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm
3energy density for flexible in-plane micro-supercapacitors.
Chem. Eng. J.
447, 137447 (
2022).
https://doi.org/10.1016/j.cej.2022.137447
|
| 20. |
H
.
Zong
,
A
.
Zhang
,
J
.
Dong
,
Y
.
He
,
H
.
Fu
et al., Flexible asymmetric supercapacitor based on open-hollow nickel-MOFs/reduced graphene oxide aerogel electrodes.
Chem. Eng. J.
475, 146088 (
2023).
https://doi.org/10.1016/j.cej.2023.146088
|
| 21. |
H
.
Guo
,
A
.
Zhang
,
H
.
Fu
,
H
.
Zong
,
F
.
Jin
et al., In situ generation of CeCoS
xbimetallic sulfide derived from “egg-box” seaweed biomass on S/N Co-doped graphene aerogels for flexible all solid-state supercapacitors.
Chem. Eng. J.
453, 139633 (
2023).
https://doi.org/10.1016/j.cej.2022.139633
|
| 22. |
Q
.
Zhang
,
S
.
Liu
,
J
.
Huang
,
H
.
Fu
,
Q
.
Fan
et al., In situ selective selenization of ZIF-derived CoSe
2nanoparticles on NiMn-layered double hydroxide@CuBr
2heterostructures for high performance supercapacitors.
J. Colloid Interface Sci.
655, 273-285 (
2024).
https://doi.org/10.1016/j.jcis.2023.11.008
|
| 23. |
A
.
Zhang
,
Q
.
Zhang
,
H
.
Fu
,
H
.
Zong
,
H
.
Guo
, Metal-organic frameworks and their derivatives-based nanostructure with different dimensionalities for supercapacitors.
Small
19, e2303911 (
2023).
https://doi.org/10.1002/smll.202303911
|
| 24. |
H
.
Sahabudeen
,
H
.
Qi
,
M
.
Ballabio
,
M
.
Položij
,
S
.
Olthof
et al., Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis.
Angew. Chem. Int. Ed.
59, 6028-6036 (
2020).
https://doi.org/10.1002/anie.201915217
|
| 25. |
K
.
Liu
,
H
.
Qi
,
R
.
Dong
,
R
.
Shivhare
,
M
.
Addicoat
et al., On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers.
Nat. Chem.
11, 994-1000 (
2019).
https://doi.org/10.1038/s41557-019-0327-5
|
| 26. |
S
.
Kim
,
H
.
Lim
,
J
.
Lee
,
H.C
.
Choi
, Synthesis of a scalable two-dimensional covalent organic framework by the photon-assisted imine condensation reaction on the water surface.
Langmuir
34, 8731-8738 (
2018).
https://doi.org/10.1021/acs.langmuir.8b00951
|
| 27. |
V
.
Augustyn
,
J
.
Come
,
M.A
.
Lowe
,
J.W
.
Kim
,
P.L
.
Taberna
et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.
Nat. Mater.
12, 518-522 (
2013).
https://doi.org/10.1038/nmat3601
|
| 28. |
C
.
Wang
,
F
.
Liu
,
J
.
Chen
,
Z
.
Yuan
,
C
.
Liu
et al., A graphene-covalent organic framework hybrid for high-performance supercapacitors.
Energy Storage Mater.
32, 448-457 (
2020).
https://doi.org/10.1016/j.ensm.2020.07.001
|
| 29. |
K
.
Jiang
,
I.A
.
Baburin
,
P
.
Han
,
C
.
Yang
,
X
.
Fu
et al., Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density.
Adv. Funct. Mater.
30, 1908243 (
2020).
https://doi.org/10.1002/adfm.201908243
|
| 30. |
Y
.
Yang
,
X
.
Zhao
,
H.-E
.
Wang
,
M
.
Li
,
C
.
Hao
et al., Phosphorized SnO
2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance.
J. Mater. Chem. A
6, 3479-3487 (
2018).
https://doi.org/10.1039/C7TA10435A
|
| 31. |
S
.
Kandambeth
,
A
.
Mallick
,
B
.
Lukose
,
M.V
.
Mane
,
T
.
Heine
et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route.
J. Am. Chem. Soc.
134, 19524-19527 (
2012).
https://doi.org/10.1021/ja308278w
|
| 32. |
Y
.
Liang
,
M
.
Xia
,
Q
.
Yu
,
Y
.
Li
,
Z
.
Sui
et al., Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate.
Adv. Compos. Hybrid Mater.
5, 184-194 (
2022).
https://doi.org/10.1007/s42114-021-00311-3
|
| 33. |
M.K
.
Hota
,
S
.
Chandra
,
Y
.
Lei
,
X
.
Xu
,
M.N
.
Hedhili
et al., Electrochemical thin-film transistors using covalent organic framework channel.
Adv. Funct. Mater.
32, 2201120 (
2022).
https://doi.org/10.1002/adfm.202201120
|
| 34. |
X
.
Chen
,
Y
.
Li
,
L
.
Wang
,
Y
.
Xu
,
A
.
Nie
et al., High-lithium-affinity chemically exfoliated 2D covalent organic frameworks.
Adv. Mater.
31, e1901640 (
2019).
https://doi.org/10.1002/adma.201901640
|
| 35. |
X
.
Xu
,
Z
.
Zhang
,
R
.
Xiong
,
G
.
Lu
,
J
.
Zhang
et al., Bending resistance covalent organic framework superlattice: “nano-hourglass” -induced charge accumulation for flexible in-plane micro-supercapacitors.
Nano-Micro Lett.
15, 25 (
2022).
https://doi.org/10.1007/s40820-022-00997-0
|
| 36. |
Y
.
Yang
,
C
.
Zhang
,
Z
.
Mei
,
Y
.
Sun
,
Q
.
An
et al., Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes.
Nano Res.
16, 9289-9298 (
2023).
https://doi.org/10.1007/s12274-023-5534-0
|
| 37. |
J
.
He
,
N
.
Wang
,
Z
.
Yang
,
X
.
Shen
,
K
.
Wang
et al., Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance.
Energy Environ. Sci.
11, 2893-2903 (
2018).
https://doi.org/10.1039/C8EE01642A
|
| 38. |
X
.
Wu
,
S
.
Xia
,
Y
.
Huang
,
X
.
Hu
,
B
.
Yuan
et al., High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries.
Adv. Funct. Mater.
29, 1903961 (
2019).
https://doi.org/10.1002/adfm.201903961
|
| 39. |
F
.
Yuan
,
W
.
Song
,
D
.
Zhang
,
Y.-S
.
Wu
,
Z
.
Li
et al., Semi-ionic C-F bond inducing fast ion storage and electron transfer in carbon anode for potassium-ion batteries.
Sci. China Mater.
66, 2630-2640 (
2023).
https://doi.org/10.1007/s40843-022-2419-4
|
| 40. |
X
.
Wang
,
H
.
Hao
,
J
.
Liu
,
T
.
Huang
,
A
.
Yu
, A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries.
Electrochim. Acta
56, 4065-4069 (
2011).
https://doi.org/10.1016/j.electacta.2010.12.108
|
| 41. |
X
.
Xu
,
C
.
Qi
,
Z
.
Hao
,
H
.
Wang
,
J
.
Jiu
et al., The surface coating of commercial LiFePO
4by utilizing ZIF-8 for high electrochemical performance lithium ion battery.
Nano-Micro Lett.
10, 1 (
2018).
https://doi.org/10.1007/s40820-017-0154-4
|
| 42. |
X
.
Li
,
M
.
Sun
,
C
.
Xu
,
X
.
Zhang
,
G
.
Wang
et al., Fast kinetic carbon anode inherited and developed from architectural designed porous aromatic framework for flexible lithium ion micro capacitors.
Adv. Funct. Mater.
33, 2300460 (
2023).
https://doi.org/10.1002/adfm.202300460
|
| 43. |
S
.
Zheng
,
J
.
Ma
,
Z.-S
.
Wu
,
F
.
Zhou
,
Y.-B
.
He
et al., All-solid-state flexible planar lithium ion micro-capacitors.
Energy Environ. Sci.
11, 2001-2009 (
2018).
https://doi.org/10.1039/C8EE00855H
|
| 44. |
X
.
Yan
,
Y
.
He
,
X
.
Liu
,
S
.
Jing
,
J
.
Guan
et al., Deterministic effect of the solid-state diffusion energy barrier for a charge carrier on the self-discharge of supercapacitors.
ACS Energy Lett.
8, 2376-2384 (
2023).
https://doi.org/10.1021/acsenergylett.3c00453
|