| 1. |
|
| 2. |
|
| 3. |
|
| 4. |
|
| 5. |
|
| 6. |
U
.
Olsbye
,
S
.
Svelle
,
M
.
Bjørgen
,
P
.
Beato
,
T.V
.
Janssens
et al., Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity.
Angew. Chem. Int. Ed.
51, 5810-5831 (
2012).
https://doi.org/10.1002/anie.201103657
|
| 7. |
Z
.
Chang
,
H
.
Yang
,
X
.
Zhu
,
P
.
He
,
H
.
Zhou
, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments.
Nat. Commun.
13, 1510 (
2022).
https://doi.org/10.1038/s41467-022-29118-6
|
| 8. |
L
.
Shen
,
H.B
.
Wu
,
F
.
Liu
,
J.L
.
Brosmer
,
G
.
Shen
et al., Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks.
Adv. Mater.
30, e1707476 (
2018).
https://doi.org/10.1002/adma.201707476
|
| 9. |
B.M
.
Wiers
,
M.-L
.
Foo
,
N.P
.
Balsara
,
J.R
.
Long
, A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites.
J. Am. Chem. Soc.
133, 14522-14525 (
2011).
https://doi.org/10.1021/ja205827z
|
| 10. |
|
| 11. |
H
.
Chen
,
H
.
Tu
,
C
.
Hu
,
Y
.
Liu
,
D
.
Dong
et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction.
J. Am. Chem. Soc.
140, 896-899 (
2018).
https://doi.org/10.1021/jacs.7b12292
|
| 12. |
X
.
Li
,
Q
.
Hou
,
W
.
Huang
,
H.-S
.
Xu
,
X
.
Wang
et al., Solution-processable covalent organic framework electrolytes for all-solid-state Li-organic batteries.
ACS Energy Lett.
5, 3498-3506 (
2020).
https://doi.org/10.1021/acsenergylett.0c01889
|
| 13. |
|
| 14. |
Y
.
Xu
,
L
.
Gao
,
Q
.
Liu
,
Q
.
Liu
,
Z
.
Chen
et al., Segmental molecular dynamics boosts Li-ion conduction in metal-organic solid electrolytes for Li-metal batteries.
Energy Storage Mater.
54, 854-862 (
2023).
https://doi.org/10.1016/j.ensm.2022.11.029
|
| 15. |
H
.
Yang
,
B
.
Liu
,
J
.
Bright
,
S
.
Kasani
,
J
.
Yang
et al., A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries.
ACS Appl. Energy Mater.
3, 4007-4013 (
2020).
https://doi.org/10.1021/acsaem.0c00410
|
| 16. |
F
.
Zhu
,
H
.
Bao
,
X
.
Wu
,
Y
.
Tao
,
C
.
Qin
et al., High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries.
ACS Appl. Mater. Interfaces
11, 43206-43213 (
2019).
https://doi.org/10.1021/acsami.9b15374
|
| 17. |
|
| 18. |
Z
.
Chang
,
Y
.
Qiao
,
H
.
Yang
,
X
.
Cao
,
X
.
Zhu
et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve.
Angew. Chem. Int. Ed.
60, 15572-15581 (
2021).
https://doi.org/10.1002/anie.202104124
|
| 19. |
Z
.
Chang
,
H
.
Yang
,
Y
.
Qiao
,
X
.
Zhu
,
P
.
He
et al., Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries.
Adv. Mater.
34, e2201339 (
2022).
https://doi.org/10.1002/adma.202201339
|
| 20. |
H.J.S
.
Sand III
., On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid.
Lond. Edinb Dublin Philos. Mag. J. Sci.
1, 45-79 (
1901).
https://doi.org/10.1080/14786440109462590
|
| 21. |
P
.
Dong
,
X
.
Zhang
,
W
.
Hiscox
,
J
.
Liu
,
J
.
Zamora
et al., Toward high-performance metal-organic-framework-based quasi-solid-state electrolytes: tunable structures and electrochemical properties.
Adv. Mater.
35, e2211841 (
2023).
https://doi.org/10.1002/adma.202211841
|
| 22. |
M.L
.
Aubrey
,
R
.
Ameloot
,
B.M
.
Wiers
,
J.R
.
Long
, Metal-organic frameworks as solid magnesium electrolytes.
Energy Environ. Sci.
7, 667-671 (
2014).
https://doi.org/10.1039/C3EE43143F
|
| 23. |
W
.
He
,
D
.
Li
,
S
.
Guo
,
Y
.
Xiao
,
W
.
Gong
et al., Redistribution of electronic density in channels of metal-Organic frameworks for high-performance quasi-solid lithium metal batteries.
Energy Storage Mater.
47, 271-278 (
2022).
https://doi.org/10.1016/j.ensm.2022.02.003
|
| 24. |
T
.
Hou
,
W
.
Xu
,
X
.
Pei
,
L
.
Jiang
,
O.M
.
Yaghi
et al., Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes.
J. Am. Chem. Soc.
144, 13446-13450 (
2022).
https://doi.org/10.1021/jacs.2c03710
|
| 25. |
Z
.
Miao
,
F
.
Zhang
,
H
.
Zhao
,
M
.
Du
,
H
.
Li
et al., Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries.
Adv. Funct. Mater.
32, 2111635 (
2022).
https://doi.org/10.1002/adfm.202111635
|
| 26. |
L
.
Han
,
Z
.
Wang
,
D
.
Kong
,
L
.
Yang
,
K
.
Yang
et al., An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries.
J. Mater. Chem. A
6, 21280-21286 (
2018).
https://doi.org/10.1039/C8TA08875F
|
| 27. |
K
.
Wang
,
C
.
Li
,
Y
.
Liang
,
T
.
Han
,
H
.
Huang
et al., Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes.
Chem. Eng. J.
289, 486-493 (
2016).
https://doi.org/10.1016/j.cej.2016.01.019
|
| 28. |
Z
.
Li
,
Q
.
Liu
,
L
.
Gao
,
Y
.
Xu
,
X
.
Kong
et al., Quasi-solid electrolyte membranes with percolated metal-organic frameworks for practical lithium-metal batteries.
J. Energy Chem.
52, 354-360 (
2021).
https://doi.org/10.1016/j.jechem.2020.04.013
|
| 29. |
Y
.
Xu
,
L
.
Gao
,
L
.
Shen
,
Q
.
Liu
,
Y
.
Zhu
et al., Ion-transport-rectifying layer enables Li-metal batteries with high energy density.
Matter
3, 1685-1700 (
2020).
https://doi.org/10.1016/j.matt.2020.08.011
|
| 30. |
G
.
Wang
,
J
.
Gao
,
Y
.
Fu
,
Z
.
Ren
,
J
.
Huang
et al., Implantable composite fibres with Self-supplied H
2O
2for localized chemodynamic therapy.
Chem. Eng. J.
388, 124211 (
2020).
https://doi.org/10.1016/j.cej.2020.124211
|
| 31. |
L
.
Valenzano
,
B
.
Civalleri
,
S
.
Chavan
,
S
.
Bordiga
,
M.H
.
Nilsen
et al., Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory.
Chem. Mater.
23, 1700-1718 (
2011).
https://doi.org/10.1021/cm1022882
|
| 32. |
G.C
.
Shearer
,
S
.
Chavan
,
S
.
Bordiga
,
S
.
Svelle
,
U
.
Olsbye
et al., Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis.
Chem. Mater.
28, 3749-3761 (
2016).
https://doi.org/10.1021/acs.chemmater.6b00602
|
| 33. |
S
.
Mohebbi
,
M
.
Shariatipour
,
B
.
Shafie
,
M.M
.
Amini
, Encapsulation of tamoxifen citrate in functionalized mesoporous silica and investigation of its release.
J. Drug Deliv. Sci. Technol.
62, 102406 (
2021).
https://doi.org/10.1016/j.jddst.2021.102406
|
| 34. |
|
| 35. |
L
.
Cai
,
H
.
Ying
,
P
.
Huang
,
Z
.
Zhang
,
H
.
Tan
et al., In-situ grown Ti
3C
2T @CoSe
2heterostructure as trapping-electrocatalyst for accelerating polysulfides conversion in lithium-sulfur battery.
Chem. Eng. J.
474, 145862 (
2023).
https://doi.org/10.1016/j.cej.2023.145862
|
| 36. |
L
.
Liu
,
Z
.
Chen
,
J
.
Wang
,
D
.
Zhang
,
Y
.
Zhu
et al., Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution.
Nat. Chem.
11, 622-628 (
2019).
https://doi.org/10.1038/s41557-019-0263-4
|
| 37. |
Q
.
Han
,
L
.
Cai
,
P
.
Huang
,
S
.
Liu
,
C
.
He
et al., Fast ionic conducting hydroxyapatite solid electrolyte interphase enables ultra-stable zinc metal anodes.
ACS Appl. Mater. Interfaces
15, 48316-48325 (
2023).
https://doi.org/10.1021/acsami.3c11649
|
| 38. |
Z
.
Wang
,
W
.
Huang
,
J
.
Hua
,
Y
.
Wang
,
H
.
Yi
et al., An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries.
Small Meth.
4, 2000082 (
2020).
https://doi.org/10.1002/smtd.202000082
|
| 39. |
Y
.
Sun
,
T
.
Yang
,
H
.
Ji
,
J
.
Zhou
,
Z
.
Wang
et al., Boosting the optimization of lithium metal batteries by molecular dynamics simulations: a perspective.
Adv. Energy Mater.
10, 2002373 (
2020).
https://doi.org/10.1002/aenm.202002373
|
| 40. |
|
| 41. |
S
.
Yuan
,
J.L
.
Bao
,
J
.
Wei
,
Y
.
Xia
,
D.G
.
Truhlar
et al., A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries.
Energy Environ. Sci.
12, 2741-2750 (
2019).
https://doi.org/10.1039/C9EE01473J
|
| 42. |
M.F
.
Döpke
,
J
.
Lützenkirchen
,
O.A
.
Moultos
,
B
.
Siboulet
,
J.-F
.
Dufrêche
et al., Preferential adsorption in mixed electrolytes confined by charged amorphous silica.
J. Phys. Chem. C
123, 16711-16720 (
2019).
https://doi.org/10.1021/acs.jpcc.9b02975
|
| 43. |
K
.
Qian
,
S
.
Seifert
,
R.E
.
Winans
,
T
.
Li
, Understanding solvation behavior of the saturated electrolytes with small/wide-angle X-ray scattering and Raman spectroscopy.
Energy Fuels
35, 19849-19855 (
2021).
https://doi.org/10.1021/acs.energyfuels.1c03328
|
| 44. |
L
.
Cao
,
D
.
Li
,
T
.
Deng
,
Q
.
Li
,
C
.
Wang
, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries.
Angew. Chem. Int. Ed.
59, 19292-19296 (
2020).
https://doi.org/10.1002/anie.202008634
|
| 45. |
H
.
Gan
,
J
.
Wu
,
F
.
Zhang
,
R
.
Li
,
H
.
Liu
, Uniform Zn
2+distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes.
Energy Storage Mater.
55, 264-271 (
2023).
https://doi.org/10.1016/j.ensm.2022.11.044
|
| 46. |
X.-X
.
Wang
,
X.-W
.
Chi
,
M.-L
.
Li
,
D.-H
.
Guan
,
C.-L
.
Miao
et al., Metal-organic frameworks derived electrolytes build multiple wetting interfaces for integrated solid-state lithium-oxygen battery.
Adv. Funct. Mater.
32, 2113235 (
2022).
https://doi.org/10.1002/adfm.202113235
|
| 47. |
B.G
.
Lee
,
Y.J
.
Park
, Enhanced electrochemical performance of lithia/Li
2RuO
3cathode by adding tris(trimethylsilyl)borate as electrolyte additive.
Sci. Rep.
10, 13498 (
2020).
https://doi.org/10.1038/s41598-020-70333-2
|
| 48. |
H
.
Ma
,
D
.
Hwang
,
Y.J
.
Ahn
,
M.-Y
.
Lee
,
S
.
Kim
et al., In situ interfacial tuning to obtain high-performance nickel-rich cathodes in lithium metal batteries.
ACS Appl. Mater. Interfaces
12, 29365-29375 (
2020).
https://doi.org/10.1021/acsami.0c06830
|
| 49. |
H.Q
.
Pham
,
M
.
Mirolo
,
M
.
Tarik
,
M. El
Kazzi
,
S
.
Trabesinger
, Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells.
Energy Storage Mater.
33, 216-229 (
2020).
https://doi.org/10.1016/j.ensm.2020.08.026
|