[1] LEAMAN J, LA H M. A comprehensive review of smart wheelchairs: Past, present, and future [J]. IEEE Transactions on Human-Machine Systems, 2017, 47(4): 486-499. [2] CASADO F E, DEMIRIS Y. Federated learning from demonstration for active assistance to smart wheelchair users [C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto: IEEE, 2022: 9326-9331. [3] MAZO M. An integral system for assisted mobility [automated wheelchair [J]. IEEE Robotics & Automation Magazine, 2001, 8(1): 46-56. [4] PRASSLER E, SCHOLZ J, FIORINI P. A robotics wheelchair for crowded public environment [J]. IEEE Robotics & Automation Magazine, 2001, 8(1): 38-45. [5] MATSUMOTO O, KOMORIYA K, HATASE T, et al. Intelligent wheelchair robot “TAO aicle” [M]//Service robot applications. Rijeka: InTech, 2008: 55-70. [6] YOKOZUKA M, SUZUKI Y, HASHIMOTO N, et al. Robotic wheelchair with autonomous traveling capability for transportation assistance in an urban environment [C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. VilamouraAlgarve: IEEE, 2012: 2234-2241. [7] JOSHI R P, TARAPURE J P, SHIBATA T. Electric wheelchair-humanoid robot collaboration for clothing assistance of the elderly [C]//2020 13th International Conference on Human System Interaction. Tokyo: IEEE, 2020: 300-306. [8] ZHANG R, LI Y Q, YAN Y Y, et al. Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(1): 128-139. [9] ROSINOL A, VIOLETTE A, ABATE M, et al. Kimera: From SLAM to spatial perception with 3D dynamic scene graphs [J]. The International Journal of Robotics Research, 2021, 40(12/13/14): 1510-1546. [10] WANG Z L, TIAN G H. Hybrid offline and online task planning for service robot using object-level semantic map and probabilistic inference [J]. Information Sciences, 2022, 593: 78-98. [11] WEI Z X, CHEN W D, WANG J C, et al. Semantic mapping for safe and comfortable navigation of a brain-controlled wheelchair [M]//Intelligent robotics and applications. Berlin: Springer, 2013: 307-317. [12] WEI Z X, CHEN W D, WANG J C, et al. Semantic topological map-based smart wheelchair navigation system for low throughput interface [M]//Intelligent autonomous systems 13. Cham: Springer, 2016: 109-120. [13] WEI Z X, CHEN W D, WANG J C. Semantic mapping for smart wheelchairs using RGB-D camera [J]. Journal of Medical Imaging and Health Informatics, 2013, 3(1): 94-100. [14] LU D V, HERSHBERGER D, SMART W D. Layered costmaps for context-sensitive navigation [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 709-715. [15] GRINVALD M, FURRER F, NOVKOVIC T, et al. Volumetric instance-aware semantic mapping and 3D object discovery [J]. IEEE Robotics and Automation Letters, 2019, 4(3): 3037-3044. [16] RODOMAGOULAKIS I, KARDARIS N, PITSIKALIS V, et al. Multimodal human action recognition in assistive human-robot interaction[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai: IEEE, 2016: 2702-2706. [17] ZHANG J, SINGH S. LOAM: Lidar odometry and mapping in real-time [C]/ Robotics: Science and Systems X. Berkeley: UC Berkeley, 2014: 1-9. [18] REDMON J, FARHADI A. YOLOv3: An incremental improvement [DB/OL]. (2018-04-08) [2023-03-16]. https://arxiv.org/abs/1804.02767 [19] LECROSNIER L, KHEMMAR R, RAGOT N, et al. Deep learning-based object detection, localisation and tracking for smart wheelchair healthcare mobility [J]. International Journal of Environmental Research and Public Health, 2020, 18(1): 91. [20] GROSSBERG M D, NAYAR S K. A general imaging model and a method for finding its parameters [C]//Proceedings Eighth IEEE International Conference on Computer Vision. Vancouver: IEEE, 2001: 108-115. [21] FURRER F, NOVKOVIC T, FEHR M, et al. Incremental object database: Building 3D models from multiple partial observations [C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 6835-6842. [22] ROESMANN C, FEITEN W, WOESCH T, et al. Trajectory modification considering dynamic constraints of autonomous robots [C]//ROBOTIK 2012; 7th German Conference on Robotics. Munich: VDE, 2012: 1-6. [23] SIEGWART R, NOURBAKHSH I R. Introduction to autonomous mobile robots [M]. Cambridge: MIT Press, 2004. [24] QUIGLEY M, CONLEY K, GERKEV B, et al. ROS: an open-source robot operating system [C]//ICRA Workshop on Open Source Software. Kobe: IEEE, 2009: 1-6. [25] LI Q N, CHEN W D, WANG J C. Dynamic shared control for human-wheelchair cooperation [C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 4278-4283.
|