
J Shanghai Jiaotong Univ Sci››2025,Vol. 30››Issue (6): 1114-1124.doi:10.1007/s12204-023-2654-3
• Automation & Computer Technologies •Previous ArticlesNext Articles
蒋伊琳1,张怡龙1,张芳园2
Received:2022-10-11Accepted:2023-02-21Online:2025-11-21Published:2023-10-24CLC Number:
JIANG Yilin, ZHANG Yilong, ZHANG Fangyuan. Infrared Single Pixel Imaging Based on Generative Adversarial Network[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1114-1124.
[1] ZHANG Z J, LIU L, LI X R, et al. Compressed sensing for rapid IR imaging [C]//IET Colloquium on Millimetre-Wave and Terahertz Engineering&Technology 2016. London: IET, 2016: 1-6. [2] UZELER H, CAKIR S, AYTAÇ T. Image reconstruction for single detector rosette scanning systems based on compressive sensing theory [J].Optical Engineering, 2016,55(2): 023108. [3] XIE C, LU X, ZENG W. Single frame super-resolution reconstruction based on sparse representation [J].Journal of Southeast University(English Edition), 2016,32(2): 177-182. [4] BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector [J].Physical Review A, 2009,79(5): 053840. [5] SHAPIRO J H. Computational ghost imaging [J].Physical Review A, 2008,78(6): 061802. [6] WANG L, ZHAO S M. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform [J].Photonics Research, 2016,4(6): 240. [7] ZHANG Z B, LIU S J, PENG J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements [J].Optica, 2018,5(3): 315. [8] ROUSSET F, DUCROS N, FARINA A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging [J].IEEE Transactions on Computational Imaging, 2017,3(1): 36-46. [9] TSAI R, HUANG T S. Multiframe image restoration and registration [J].Computer Vision and Image Processing, 1984,1: 317-339. [10] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1637-1645. [11] ZHANG D, HE J Z. Hybrid sparse-representation-based approach to image super-resolution reconstruction [J].Journal of Electronic Imaging, 2017,26(2): 023008. [12] TAN J, TAO Z Q, CAO A H, et al. An edge-preserving iterative back-projection method for image super-resolution [J].Proceedings of SPIE, 2016,10033: 844-849. [13] DAVENPORT M A, WAKIN M B. Analysis of orthogonal matching pursuit using the restricted isometry property [J].IEEE Transactions on Information Theory, 2010,56(9): 4395-4401. [14] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J].IEEE Transactions on Information Theory, 2007,53(12): 4655-4666. [15] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation [J].IEEE Transactions on ImageProcessing, 2010,19(11): 2861-2873. [16] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]//2017IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140. [17] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]//2018IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481. [18] AN Z Y, ZHANG J Y, SHENG Z Y, et al. RBDN: Residual bottleneck dense network for image super-resolution [J].IEEE Access, 2021,9: 103440-103451. [19] ZHU Y, GEIß C, SO E. Image super-resolution with dense-sampling residual channel-spatial attention networks for multi-temporal remote sensing image classification [J].International Journal of Applied Earth Observation and Geoinformation, 2021,104: 102543. [20] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks [M]//Computer vision - ECCV 2018. Cham: Springer, 2018: 294-310. [21] WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: A survey [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(10): 3365-3387. [22] AYAS S, EKINCI M. Microscopic image super resolution using deep convolutional neural networks [J].Multimedia Tools and Applications, 2020,79(21): 15397-15415. [23] WANG Y F, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 977-97709. [24] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883. [25] CABALLERO J, LEDIG C, AITKEN A, et al. Real-time video super-resolution with spatio-temporal networks and motion compensation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2848-2857. [26] SAJJADI M S M, SCHÖLKOPF B, HIRSCH M. EnhanceNet: single image super-resolution through automated texture synthesis [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4501-4510. [27] WANG X T, YU K, DONG C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform [C]//2018IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 606-615. |
| [1] | CHEN Cheng, PENG Pan, TAO Wei, ZHAO Hui.Hyperspectral Satellite Image Classification Based on Feature Pyramid Networks With 3D Convolution[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1073-1084. |
| [2] | TAHIR Rizwana, CAI Yunze.Multi-Human Pose Estimation by Deep Learning-Based Sequential Approach for Human Keypoint Position and Human Body Detection[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1103-1113. |
| [3] | LIU Mengge, LIU Hao, HE Xin, JIN Shaohui, CHEN Pengyun, XU Mingliang.Research Advances on Non-Line-of-Sight Imaging Technology[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 833-854. |
| [4] | YE Jihua, JIANG Lu, XIAO Shunjie, ZONG Yi, JIANG Aiwen.Multi-Label Image Classification Model Based on Multiscale Fusion and Adaptive Label Correlation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898. |
| [5] | LIN Xiao, LU Meichen, GAO Mufeng, LI Yan.Lightweight Human Pose Estimation Based on Multi-Attention Mechanism[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
| [6] | ZHOU Bowei, XING Guanyu, LIU Yanli.Rail Line Detection Algorithm Based on Improved CLRNet[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 923-934. |
| [7] | DING Leqi, WANG Biyun, YAO Lixiu, CAI Yunze.MAGPNet: Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951. |
| [8] | LI Shanshan, GUO Yali, HUANG Jiaxin, GAO Ruoyun.Fast Attack Algorithm for JPEG Image Encryption with Block Position Shuffle[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 976-987. |
| [9] | LIU Biao, LIU Guangyu, FENG Wei, WANG Shuai, ZHOU Bao, ZHAO Enming.Undecimated Dual-Tree Complex Wavelet Transform and Fuzzy Clustering-Based Sonar Image Denoising Technique[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 998-1008. |
| [10] | LIU Chen, LI Wenfa, XU Yunwen, LI Dewei.CenterRCNN: Two-Stage Anchor-Free Object Detection Using Center Keypoint-Based Region Proposal Network[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1028-1036. |
| [11] | ZHANG Guo, CHEN Tao, WANG Jianping.CSC-YOLO: An Image Recognition Model for Surface Defect Detection of Copper Strip and Plates[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1037-1049. |
| [12] | JIANG Wenbo, ZHENG Hangbin, BAO Jinsong.Novel Multi-Step Deep Learning Approach for Detection of Complex Defects in Solar Cells[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
| [13] | YANG Zhuang, LI Zhaofei, WANG Jihua, WEI Xudong, ZHANG Yijie.Named Entity Identification of Chinese Poetry and Wine Culture Based on ALBERT[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
| [14] | Shao Dangguo, Yang Yuanbiao, Ma Lei, Yi Sanli.CT-MFENet: Context Transformer and Multi-Scale Feature Extraction Network via Global-Local Features Fusion for Retinal Vessels Segmentation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 668-682. |
| [15] | Xiao Xianzi, Miao Yubin.Heart Rate Sensing Method Based on Short Millimeter Wave Radar Sequence[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 683-692. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||