
J Shanghai Jiaotong Univ Sci››2025,Vol. 30››Issue (6): 1073-1084.doi:10.1007/s12204-023-2645-4
• Automation & Computer Technologies •Previous ArticlesNext Articles
陈铖,彭攀,陶卫,赵辉
Received:2022-10-11Accepted:2022-12-23Online:2025-11-21Published:2025-11-26CLC Number:
CHEN Cheng, PENG Pan, TAO Wei, ZHAO Hui. Hyperspectral Satellite Image Classification Based on Feature Pyramid Networks With 3D Convolution[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1073-1084.
[1] HELDENS W, HEIDEN U, ESCH T, et al. Can the future EnMAP mission contribute to urban applications? A literature survey [J].Remote Sensing, 2011,3(9): 1817-1846. [2] AHMAD M, KHAN A M. Hyperspectral band selection using unsupervised non-linear deep auto encoder to train external classifiers [DB/OL]. (2017-05-19). https://arxiv.org/abs/1705.06920 [3] EL-SHARKAWY Y H, ELBASUNEY S. Hyperspectral imaging: Anew prospective for remote recognition of explosive materials [J].Remote Sensing Applications:Society and Environment, 2019,13: 31-38. [4] DUMKE I, NORNES S M, PURSER A, et al. First hyperspectral imaging survey of the deep seafloor: High-resolution mapping of manganese nodules [J].Remote Sensing of Environment, 2018,209: 19-30. [5] DONOHO D L. High-dimensional data analysis: The curses and blessings of dimensionality [EB/OL]. (2000-08-08).https://sunju.org/teach/TMML-Fall-2021/Donoho-2000.pdf [6] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J].IEEE Transactions onGeoscience andRemoteSensing, 2004,42(8): 1778-1790. [7] LI J, BIOUCAS-DIAS J M, PLAZA A. Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression [J].IEEE Geoscience and Remote Sensing Letters, 2013,10(2): 318-322. [8] ZHANG C S, ZHENG Y W. Hyperspectral remote sensing image classification based on combined SVM and LDA [J].Proceedings of SPIE, 2014,9263: 92632P. [9] FALCO N, BENEDIKTSSON J A, BRUZZONE L. Spectral and spatial classification of hyperspectral images based on ICA and reduced morphological attribute profiles [J].IEEE Transactions on Geoscience and Remote Sensing, 2015,53(11): 6223-6240. [10] JIA S, SHEN L L, LI Q Q. Gabor feature-based collaborative representation for hyperspectral imagery classification [J].IEEE Transactions on Geoscience and Remote Sensing, 2015,53(2): 1118-1129. [11] TUIA D, VOLPI M, DALLA MURA M, et al. Automatic feature learning for spatio-spectral image classification with sparse SVM [J].IEEE Transactions on Geoscience and Remote Sensing, 2014,52(10): 6062-6074. [12] HU W, HUANG Y Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification [J].Journal of Sensors, 2015,2015: 1-12. [13] LI W, WU G D, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features [J].IEEE Transactions on Geoscience and Remote Sensing, 2017,55(2): 844-853. [14] DING C, LI Y, XIA Y, et al. Convolutional neural networks based hyperspectral image classification method with adaptive kernels [J].Remote Sensing, 2017,9(6): 618. [15] MA X R, FU A Y, WANG J, et al. Hyperspectral image classification based on deep deconvolution network with skip architecture [J].IEEE Transactions on Geoscience and Remote Sensing, 2018,56(8): 4781-4791. [16] ZHONG Z L, LI J, LUO Z M, et al. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework [J].IEEE Transactions on Geoscience and Remote Sensing, 2018,56(2): 847-858. [17] ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification [J].IEEE Geoscience and Remote Sensing Letters, 2020,17(2): 277-281. [18] HANG R L, LI Z, LIU Q S, et al. Hyperspectral image classification with attention-aided CNNs [J].IEEE Transactions on Geoscience and Remote Sensing, 2021,59(3): 2281-2293. [19] FANG B, LI Y, ZHANG H K, et al. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism [J].Remote Sensing, 2019,11(2): 159. [20] RODARMEL C, SHAN J. Principal component analysis for hyperspectral image classification [J].Surveying and Land InformationSystems, 2002,62(2): 115-122. [21] YUE J, ZHAO W Z, MAO S J, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks [J].Remote Sensing Letters, 2015,6(6): 468-477. [22] JI S W, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition [J].IEEETransactions on Pattern Analysis and Machine Intelligence, 2013,35(1): 221-231. [23] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944. [24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J].Communications of the ACM, 2017,60(6): 84-90. [25] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting [J].Journal of Machine Learning Research, 2014,15(1): 1929-1958. [26] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [DB/OL]. (2014-09-04).https://arxiv.org/abs/1409.1556 [27] BEN HAMIDA A, BENOIT A, LAMBERT P, et al. 3-D deep learning approach for remote sensing image classification [J].IEEE Transactions onGeoscience andRemoteSensing, 2018,56(8): 4420-4434. [28] LI Y, ZHANG H K, SHEN Q A. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network [J].Remote Sensing, 2017,9(1): 67. [29] LEE H, KWON H. Contextual deep CNN based hyperspectral classification [C]//2016 IEEEInternational Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016: 3322-3325. [30] HE M Y, LI B, CHEN H H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification [C]//2017 IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 3904-3908. |
| [1] | JIANG Yilin, ZHANG Yilong, ZHANG Fangyuan.Infrared Single Pixel Imaging Based on Generative Adversarial Network[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1114-1124. |
| [2] | TAHIR Rizwana, CAI Yunze.Multi-Human Pose Estimation by Deep Learning-Based Sequential Approach for Human Keypoint Position and Human Body Detection[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(6): 1103-1113. |
| [3] | LIU Mengge, LIU Hao, HE Xin, JIN Shaohui, CHEN Pengyun, XU Mingliang.Research Advances on Non-Line-of-Sight Imaging Technology[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 833-854. |
| [4] | YE Jihua, JIANG Lu, XIAO Shunjie, ZONG Yi, JIANG Aiwen.Multi-Label Image Classification Model Based on Multiscale Fusion and Adaptive Label Correlation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898. |
| [5] | LIN Xiao, LU Meichen, GAO Mufeng, LI Yan.Lightweight Human Pose Estimation Based on Multi-Attention Mechanism[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
| [6] | ZHOU Bowei, XING Guanyu, LIU Yanli.Rail Line Detection Algorithm Based on Improved CLRNet[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 923-934. |
| [7] | DING Leqi, WANG Biyun, YAO Lixiu, CAI Yunze.MAGPNet: Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951. |
| [8] | LI Shanshan, GUO Yali, HUANG Jiaxin, GAO Ruoyun.Fast Attack Algorithm for JPEG Image Encryption with Block Position Shuffle[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 976-987. |
| [9] | LIU Biao, LIU Guangyu, FENG Wei, WANG Shuai, ZHOU Bao, ZHAO Enming.Undecimated Dual-Tree Complex Wavelet Transform and Fuzzy Clustering-Based Sonar Image Denoising Technique[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 998-1008. |
| [10] | LIU Chen, LI Wenfa, XU Yunwen, LI Dewei.CenterRCNN: Two-Stage Anchor-Free Object Detection Using Center Keypoint-Based Region Proposal Network[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1028-1036. |
| [11] | ZHANG Guo, CHEN Tao, WANG Jianping.CSC-YOLO: An Image Recognition Model for Surface Defect Detection of Copper Strip and Plates[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1037-1049. |
| [12] | JIANG Wenbo, ZHENG Hangbin, BAO Jinsong.Novel Multi-Step Deep Learning Approach for Detection of Complex Defects in Solar Cells[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
| [13] | YANG Zhuang, LI Zhaofei, WANG Jihua, WEI Xudong, ZHANG Yijie.Named Entity Identification of Chinese Poetry and Wine Culture Based on ALBERT[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
| [14] | Shao Dangguo, Yang Yuanbiao, Ma Lei, Yi Sanli.CT-MFENet: Context Transformer and Multi-Scale Feature Extraction Network via Global-Local Features Fusion for Retinal Vessels Segmentation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 668-682. |
| [15] | Xiao Xianzi, Miao Yubin.Heart Rate Sensing Method Based on Short Millimeter Wave Radar Sequence[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 683-692. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||