| 1. |
M.
Metzger
,
M.M.
Besli
,
S.
Kuppan
,
S.
Hellstrom
,
S.
Kim
et al., Techno-economic analysis of capacitive and intercalative water deionization.
Energy Environ. Sci.
13, 1544-1560 (
2020).
https://doi.org/10.1039/D0EE00725K
|
| 2. |
P.
Srimuk
,
X.
Su
,
J.
Yoon
,
D.
Aurbach
,
V.
Presser
, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements.
Nat. Rev. Mater.
5, 517-538 (
2020).
https://doi.org/10.1038/s41578-020-0193-1
|
| 3. |
|
| 4. |
|
| 5. |
W.
Tang
,
D.
He
,
C.
Zhang
,
P.
Kovalsky
,
T.D.
Waite
, Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
Water Res.
120, 229-237 (
2017).
https://doi.org/10.1016/j.watres.2017.05.009
|
| 6. |
J.
Lee
,
S.
Kim
,
C.
Kim
,
J.
Yoon
, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques.
Energy Environ. Sci.
7, 3683-3689 (
2014).
https://doi.org/10.1039/C4EE02378A
|
| 7. |
S.
Porada
,
R.
Zhao
,
A. van der
Wal
,
V.
Presser
,
P.M.
Biesheuvel
, Review on the science and technology of water desalination by capacitive deionization.
Prog. Mater. Sci.
58, 1388-1442 (
2013).
https://doi.org/10.1016/j.pmatsci.2013.03.005
|
| 8. |
Y.
Jiang
,
L.
Chai
,
D.
Zhang
,
F.
Ouyang
,
X.
Zhou
et al., Facet-controlled LiMn
2O
4/C as deionization electrode with enhanced stability and high desalination performance.
Nano-Micro Lett.
14, 176 (
2022).
https://doi.org/10.1007/s40820-022-00897-3
|
| 9. |
Z.
Liu
,
H.
Li
, Exploration of the exceptional capacitive deionization performance of CoMn
2O
4microspheres electrode.
Energy Environ. Mater.
6, 12255 (
2023).
https://doi.org/10.1002/eem2.12255
|
| 10. |
S.
Wang
,
G.
Wang
,
T.
Wu
,
C.
Li
,
Y.
Wang
et al., Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal.
Environ. Sci. Technol.
53, 6292-6301 (
2019).
https://doi.org/10.1021/acs.est.9b00662
|
| 11. |
J.
Ma
,
Y.
Xiong
,
X.
Dai
,
F.
Yu
, Zinc spinel ferrite nanoparticles as a pseudocapacitive electrode with ultrahigh desalination capacity and long-term stability.
Environ. Sci. Technol. Lett.
7, 118-125 (
2020).
https://doi.org/10.1021/acs.estlett.0c00027
|
| 12. |
M.
Liang
,
X.
Bai
,
F.
Yu
,
J.
Ma
, A confinement strategy to in situ prepare a peanut-like N-doped, C-wrapped TiO
2electrode with an enhanced desalination capacity and rate for capacitive deionization.
Nano Res.
14, 684-691 (
2021).
https://doi.org/10.1007/s12274-020-3097-x
|
| 13. |
|
| 14. |
X.
Zhang
,
E.A.
Toledo-Carrillo
,
D.
Yu
,
J.
Dutta
, Effect of surface charge on the fabrication of hierarchical Mn-based Prussian blue analogue for capacitive desalination.
ACS Appl. Mater. Interfaces
14, 40371-40381 (
2022).
https://doi.org/10.1021/acsami.2c08192
|
| 15. |
W.
Shi
,
X.
Liu
,
T.
Deng
,
S.
Huang
,
M.
Ding
et al., Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with Prussian blue nanocrystals.
Adv. Mater.
32, 1907404 (
2020).
https://doi.org/10.1002/adma.201907404
|
| 16. |
J.
Guo
,
Y.
Wang
,
Y.
Cai
,
H.
Zhang
,
Y.
Li
et al., Ni-doping Cu-Prussian blue analogue/carbon nanotubes composite (Ni-CuPBA/CNTs) with 3D electronic channel-rich network structure for capacitive deionization.
Desalination
528, 115622 (
2022).
https://doi.org/10.1016/j.desal.2022.115622
|
| 17. |
J.
Cao
,
Y.
Wang
,
L.
Wang
,
F.
Yu
,
J.
Ma
, Na
3V
2(PO
4)
3@C as faradaic electrodes in capacitive deionization for high-performance desalination.
Nano Lett.
19, 823-828 (
2019).
https://doi.org/10.1021/acs.nanolett.8b04006
|
| 18. |
S.
Xing
,
Y.
Cheng
,
F.
Yu
,
J.
Ma
, Na
3(VO)
2(PO
4)
2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity.
J. Colloid Interface Sci.
598, 511-518 (
2021).
https://doi.org/10.1016/j.jcis.2021.04.051
|
| 19. |
J.
Lei
,
Y.
Xiong
,
F.
Yu
,
J.
Ma
, Flexible self-supporting CoFe-LDH/MXene film as a chloride ions storage electrode in capacitive deionization.
Chem. Eng. J.
437, 135381 (
2022).
https://doi.org/10.1016/j.cej.2022.135381
|
| 20. |
M.
Liang
,
L.
Wang
,
V.
Presser
,
X.
Dai
,
F.
Yu
et al., Combining battery-type and pseudocapacitive charge storage in Ag/Ti
3C
2t
xMXene electrode for capturing chloride ions with high capacitance and fast ion transport.
Adv. Sci.
7, e2000621 (
2020).
https://doi.org/10.1002/advs.202000621
|
| 21. |
X.
Shen
,
Y.
Xiong
,
R.
Hai
,
F.
Yu
,
J.
Ma
, All-MXene-based integrated membrane electrode constructed using Ti
3C
2T
xas an intercalating agent for high-performance desalination.
Environ. Sci. Technol.
54, 4554-4563 (
2020).
https://doi.org/10.1021/acs.est.9b05759
|
| 22. |
J.
Zhang
,
J.
Wang
,
F.
Zhu
,
P.
Mao
,
Z.
Wu
et al., Dispersing bentonite by electron beam irradiation and its adsorption performance of Cr(VI) in the aqueous solution.
Water Air Soil Pollut.
233, 503 (
2022).
https://doi.org/10.1007/s11270-022-05980-4
|
| 23. |
Y.
Xiong
,
F.
Yu
,
S.
Arnold
,
L.
Wang
,
V.
Presser
et al., Three-dimensional cobalt hydroxide hollow cube/vertical nanosheets with high desalination capacity and long-term performance stability in capacitive deionization.
Research
2021,
9754145(2021).
https://doi.org/10.34133/2021/9754145
|
| 24. |
F.
Yu
,
L.
Wang
,
Y.
Wang
,
X.
Shen
,
Y.
Cheng
et al., Faradaic reactions in capacitive deionization for desalination and ion separation.
J. Mater. Chem. A
7, 15999-16027 (
2019).
https://doi.org/10.1039/C9TA01264H
|
| 25. |
|
| 26. |
|
| 27. |
S.
Chen
,
Q.
Wen
,
Y.
Zhu
,
Y.
Ji
,
Y.
Pu
et al., Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction.
Chin. Chem. Lett.
33, 5101-5105 (
2022).
https://doi.org/10.1016/j.cclet.2022.04.022
|
| 28. |
X.
Cai
,
J.
Du
,
G.
Zhong
,
Y.
Zhang
,
L.
Mao
et al., Constructing a CeO
2/Zn
xCd
1-xIn
2S
4S-scheme hollow heterostructure for efficient photocatalytic H
2evolution.
Acta Phys. Chim. Sin.(
2023).
https://doi.org/10.3866/pku.whxb202302017
|
| 29. |
Y.
Chen
,
C.
Chen
,
X.
Cao
,
Z.
Wang
,
N.
Zhang
et al., Recent advances in defect and interface engineering for electroreduction of CO
2and N
2.
Acta Phys. Chim. Sin.(
2023).
https://doi.org/10.3866/pku.whxb202212053
|
| 30. |
W.
Jiang
,
H.
Jiang
,
W.
Liu
,
X.
Guan
,
Y.
Li
et al., Pickering emulsion templated proteinaceous microsphere with bio-stimuli responsiveness.
Acta Phys. Chim. Sin.(
2023).
https://doi.org/10.3866/pku.whxb202301041
|
| 31. |
X.
Wang
,
Y.
Cheng
,
G.
Xue
,
Z.
Zhou
,
M.
Zhao
et al., Giant enhancement of optical second harmonic generation in hollow-core fiber integrated with GaSe nanoflakes.
Acta Phys. Chim. Sin.(
2023).
https://doi.org/10.3866/pku.whxb202212028
|
| 32. |
Y.
Xiong
,
F.
Yu
,
J.
Ma
, Research progress in chlorine ion removal electrodes for desalination by capacitive deionization.
Acta Phys. Chim. Sin.
38, 2006037 (
2020).
https://doi.org/10.3866/pku.whxb202006037
|
| 33. |
J.
Mou
,
L.
Chen
,
J.
Fan
,
L.
Zeng
,
X.
Jiang
et al., Construction of a highly active Rh/CeO
2-ZrO
2-Al
2O
3catalyst based on Rh micro-chemical state regulation and its three-way catalytic activity.
Acta Phys. Chim. Sin.
39, 2302041 (
2023).
https://doi.org/10.3866/pku.whxb202302041
|
| 34. |
N.
Yabuuchi
,
K.
Kubota
,
M.
Dahbi
,
S.
Komaba
, Research development on sodium-ion batteries.
Chem. Rev.
114, 11636-11682 (
2014).
https://doi.org/10.1021/cr500192f
|
| 35. |
S.P.
Ong
,
V.L.
Chevrier
,
G.
Hautier
,
A.
Jain
,
C.
Moore
et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials.
Energy Environ. Sci.
4, 3680-3688 (
2011).
https://doi.org/10.1039/C1EE01782A
|
| 36. |
A.
Ali
,
M.
Ammar
,
A.
Mukhtar
,
T.
Ahmed
,
M.
Ali
et al., 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode.
J. Electroanal. Chem.
857, 113710 (
2020).
https://doi.org/10.1016/j.jelechem.2019.113710
|
| 37. |
|
| 38. |
C.
Yuan
,
X.
Zhang
,
L.
Su
,
B.
Gao
,
L.
Shen
, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors.
J. Mater. Chem.
19, 5772-5777 (
2009).
https://doi.org/10.1039/B902221J
|
| 39. |
L.
Fang
,
C.
Wang
,
L.
Huangfu
,
N.
Bahlawane
,
H.
Tian
et al., Enabling full conversion reaction with high reversibility to approach theoretical capacity for sodium storage.
Adv. Funct. Mater.
29, 1906680 (
2019).
https://doi.org/10.1002/adfm.201906680
|
| 40. |
L.
Fang
,
Z.
Lan
,
W.
Guan
,
P.
Zhou
,
N.
Bahlawane
et al., Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage.
Energy Storage Mater.
18, 107-113 (
2019).
https://doi.org/10.1016/j.ensm.2018.10.002
|
| 41. |
X.
Xiong
,
C.
Yang
,
G.
Wang
,
Y.
Lin
,
X.
Ou
et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries.
Energy Environ. Sci.
10, 1757-1763 (
2017).
https://doi.org/10.1039/C7EE01628J
|
| 42. |
M.
Okubo
,
E.
Hosono
,
J.
Kim
,
M.
Enomoto
,
N.
Kojima
et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO
2electrode.
J. Am. Chem. Soc.
129, 7444-7452 (
2007).
https://doi.org/10.1021/ja0681927
|
| 43. |
|
| 44. |
S.
Wang
,
Y.
Zou
,
F.
Xu
,
C.
Xiang
,
H.
Peng
et al., Morphological control and electrochemical performance of NiCo
2O
4@NiCo layered double hydroxide as an electrode for supercapacitors.
J. Energy Storage
41, 102862 (
2021).
https://doi.org/10.1016/j.est.2021.102862
|
| 45. |
|
| 46. |
Z.
Jia
,
R.
Ding
,
W.
Yu
,
Y.
Li
,
A.
Wang
et al., Unraveling the charge storage and activity-enhancing mechanisms of Zn-doping perovskite fluorides and engineering the electrodes and electrolytes for wide-temperature aqueous supercabatteries.
Adv. Funct. Mater.
32, 2107674 (
2022).
https://doi.org/10.1002/adfm.202107674
|
| 47. |
S.
Cao
,
Y.
Li
,
Y.
Tang
,
Y.
Sun
,
W.
Li
et al., Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater.
Adv. Mater.
35, e2301011 (
2023).
https://doi.org/10.1002/adma.202301011
|
| 48. |
H.
Zhou
,
G.
Zhu
,
S.
Dong
,
P.
Liu
,
Y.
Lu
et al., Ethanol-induced Ni
2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors.
Adv. Mater.
35, e2211523 (
2023).
https://doi.org/10.1002/adma.202211523
|
| 49. |
X.-T.
Wang
,
T.
Ouyang
,
L.
Wang
,
J.-H.
Zhong
,
Z.-Q.
Liu
, Surface reorganization on electrochemically-induced Zn-Ni-co spinel oxides for enhanced oxygen electrocatalysis.
Angew. Chem. Int. Ed.
59, 6492-6499 (
2020).
https://doi.org/10.1002/anie.202000690
|
| 50. |
X.
Liu
,
Z.
Chang
,
L.
Luo
,
T.
Xu
,
X.
Lei
et al., Hierarchical Zn
xCo
3-xO
4nanoarrays with high activity for electrocatalytic oxygen evolution.
Chem. Mater.
26, 1889-1895 (
2014).
https://doi.org/10.1021/cm4040903
|
| 51. |
J.
Li
,
Z.
Liu
,
Q.
Zhang
,
Y.
Cheng
,
B.
Zhao
et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors.
Nano Energy
57, 22-33 (
2019).
https://doi.org/10.1016/j.nanoen.2018.12.011
|
| 52. |
Z.
Li
,
M.
Shao
,
L.
Zhou
,
R.
Zhang
,
C.
Zhang
et al., A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays.
Nano Energy
20, 294-304 (
2016).
https://doi.org/10.1016/j.nanoen.2015.12.030
|
| 53. |
S.-I.
Kim
,
J.-S.
Lee
,
H.-J.
Ahn
,
H.-K.
Song
,
J.-H.
Jang
, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology.
ACS Appl. Mater. Interfaces
5, 1596-1603 (
2013).
https://doi.org/10.1021/am3021894
|
| 54. |
X.
Lou
,
C.
Yuan
,
E.
Rhoades
,
Q.
Zhang
,
L.
Archer
, Encapsulation and Ostwald ripening of Au and Au-Cl complex nanostructures in silica shells.
Adv. Funct. Mater.
16, 1679-1684 (
2006).
https://doi.org/10.1002/adfm.200500909
|
| 55. |
C.-Y.
Cao
,
W.
Guo
,
Z.-M.
Cui
,
W.-G.
Song
,
W.
Cai
, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes.
J. Mater. Chem.
21, 3204-3209 (
2011).
https://doi.org/10.1039/C0JM03749D
|
| 56. |
T.
Liu
,
J.
Serrano
,
J.
Elliott
,
X.
Yang
,
W.
Cathcart
et al., Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers.
Sci. Adv.
6, 0906 (
2020).
https://doi.org/10.1126/sciadv.aaz0906
|
| 57. |
X.
Gong
,
S.
Zhang
,
W.
Luo
,
N.
Guo
,
L.
Wang
et al., Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization.
ACS Appl. Mater. Interfaces
12, 49586-49595 (
2020).
https://doi.org/10.1021/acsami.0c13503
|
| 58. |
H.
Chen
,
L.
Hu
,
M.
Chen
,
Y.
Yan
,
L.
Wu
, Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials.
Adv. Funct. Mater.
24, 934-942 (
2014).
https://doi.org/10.1002/adfm.201301747
|
| 59. |
Q.
Pan
,
F.
Zheng
,
D.
Deng
,
B.
Chen
,
Y.
Wang
, Interlayer spacing regulation of NiCo-LDH nanosheets with ultrahigh specific capacity for battery-type supercapacitors.
ACS Appl. Mater. Interfaces
13, 56692-56703 (
2021).
https://doi.org/10.1021/acsami.1c19320
|
| 60. |
D.
Li
,
S.
Wang
,
G.
Wang
,
C.
Li
,
X.
Che
et al., Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination.
ACS Appl. Mater. Interfaces
11, 31200-31209 (
2019).
https://doi.org/10.1021/acsami.9b10307
|
| 61. |
B.
Peng
,
Y.
Chen
,
F.
Wang
,
Z.
Sun
,
L.
Zhao
et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell.
Adv. Mater.
34, e2103210 (
2022).
https://doi.org/10.1002/adma.202103210
|
| 62. |
Q.
Yin
,
D.
Rao
,
G.
Zhang
,
Y.
Zhao
,
J.
Han
et al., CoFe-Cl layered double hydroxide: a new cathode material for high-performance chloride ion batteries.
Adv. Funct. Mater.
29, 1900983 (
2019).
https://doi.org/10.1002/adfm.201900983
|
| 63. |
S.
Fleischmann
,
J.B.
Mitchell
,
R.
Wang
,
C.
Zhan
,
D.-E.
Jiang
et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials.
Chem. Rev.
120, 6738-6782 (
2020).
https://doi.org/10.1021/acs.chemrev.0c00170
|
| 64. |
J.
Ji
,
L.L.
Zhang
,
H.
Ji
,
Y.
Li
,
X.
Zhao
et al., Nanoporous Ni(OH)
2thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor.
ACS Nano
7, 6237-6243 (
2013).
https://doi.org/10.1021/nn4021955
|
| 65. |
X.
Lu
,
D.
Zheng
,
T.
Zhai
,
Z.
Liu
,
Y.
Huang
et al., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor.
Energy Environ. Sci.
4, 2915-2921 (
2011).
https://doi.org/10.1039/C1EE01338F
|
| 66. |
J.
Guo
,
X.
Xu
,
J.P.
Hill
,
L.
Wang
,
J.
Dang
et al., Graphene-carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization.
Chem. Sci.
12, 10334-10340 (
2021).
https://doi.org/10.1039/D1SC00915J
|
| 67. |
B.
Zhao
,
R.
Wang
,
Y.
Li
,
Y.
Ren
,
X.
Li
et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure.
J. Mater. Chem. C
8, 7401-7410 (
2020).
https://doi.org/10.1039/D0TC00987C
|
| 68. |
M.E.
Suss
,
S.
Porada
,
X.
Sun
,
P.M.
Biesheuvel
,
J.
Yoon
et al., Water desalination
viacapacitive deionization: what is it and what can we expect from it? Energy Environ.
Sci.
8, 2296-2319 (
2015).
https://doi.org/10.1039/C5EE00519A
|
| 69. |
C.
Zhang
,
D.
Wang
,
Z.
Wang
,
G.
Zhang
,
Z.
Liu
et al., Boosting capacitive deionization performance of commercial carbon fibers cloth via structural regulation based on catalytic-etching effect.
Energy Environ. Mater.
6, 12276 (
2023).
https://doi.org/10.1002/eem2.12276
|
| 70. |
W.
Lei
,
J.
Liang
,
P.
Tan
,
S.
Yang
,
L.
Fan
et al., Preparation of edible starch nanomaterials for the separation of polyphenols from fruit pomace extract and determination of their adsorption properties.
Int. J. Biol. Macromol.
222, 2054-2064 (
2022).
https://doi.org/10.1016/j.ijbiomac.2022.10.004
|
| 71. |
|
| 72. |
N.
Liu
,
L.
Yu
,
B.
Liu
,
F.
Yu
,
L.
Li
et al., Ti
3C
2-MXene partially derived hierarchical 1D/2D TiO
2/Ti
3C
2heterostructure electrode for high-performance capacitive deionization.
Adv. Sci.
10, 2204041 (
2023).
https://doi.org/10.1002/advs.202204041
|
| 73. |
H.-Y.
Huang
,
Y.-H.
Tu
,
Y.-H.
Yang
,
Y.-T.
Lu
,
C.-C.
Hu
, Dopant-designed conducting polymers for constructing a high-performance, electrochemical deionization system achieving low energy consumption and long cycle life.
Chem. Eng. J.
457, 141373 (
2023).
https://doi.org/10.1016/j.cej.2023.141373
|
| 74. |
J.
Liang
,
J.
Yu
,
W.
Xing
,
W.
Tang
,
N.
Tang
et al., 3D interconnected network architectures assembled from W
18O
49and Ti
3C
2MXene with excellent electrochemical properties and CDI performance.
Chem. Eng. J.
435, 134922 (
2022).
https://doi.org/10.1016/j.cej.2022.134922
|
| 75. |
Z.
Bo
,
Z.
Huang
,
C.
Xu
,
Y.
Chen
,
E.
Wu
et al., Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization.
Energy Storage Mater.
50, 395-406 (
2022).
https://doi.org/10.1016/j.ensm.2022.05.042
|
| 76. |
Q.
Li
,
X.
Xu
,
J.
Guo
,
J.P.
Hill
,
H.
Xu
et al., Two-dimensional MXene-polymer heterostructure with ordered In-plane mesochannels for high-performance capacitive deionization.
Angew. Chem. Int. Ed.
60, 26528-26534 (
2021).
https://doi.org/10.1002/anie.202111823
|
| 77. |
|
| 78. |
H.-S.
Kim
,
J.B.
Cook
,
H.
Lin
,
J.S.
Ko
,
S.H.
Tolbert
et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO
3-x.
Nat. Mater.
16, 454-460 (
2017).
https://doi.org/10.1038/nmat4810
|
| 79. |
R.
Niu
,
H.
Li
,
Y.
Ma
,
L. He,
J
. Li An, insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid.
Electrochim. Acta
176, 755-762 (
2015).
https://doi.org/10.1016/j.electacta.2015.07.012
|
| 80. |
S.
Wang
,
F.
Li
,
A.D.
Easley
,
J.L.
Lutkenhaus
, Real-time insight into the doping mechanism of redox-active organic radical polymers.
Nat. Mater.
18, 69-75 (
2019).
https://doi.org/10.1038/s41563-018-0215-1
|
| 81. |
N.
Shpigel
,
M.D.
Levi
,
S.
Sigalov
,
O.
Girshevitz
,
D.
Aurbach
et al., In situ hydrodynamic spectroscopy for structure characterization of porous energy storageelectrodes.
Nat. Mater.
15, 570-575 (
2016).
https://doi.org/10.1038/nmat4577
|
| 82. |
P.
Roach
,
D.
Farrar
,
C.C.
Perry
, Interpretation of protein adsorption: surface-induced conformational changes.
J. Am. Chem. Soc.
127, 8168-8173 (
2005).
https://doi.org/10.1021/ja042898o
|
| 83. |
X.
Sun
,
J.
Sun
,
C.
Wu
,
L.
Guo
,
L.
Hou
et al., Unveiling composition/crystal structure-dependent electrochemical behaviors via experiments and first-principles calculations: rock-salt NiCoO
2vs. spinel Ni
1.5Co
1.5O
4.
Mater. Today Energy
19, 100592 (
2021).
https://doi.org/10.1016/j.mtener.2020.100592
|
| 84. |
J.
Yang
,
C.
Yu
,
X.
Fan
,
S.
Liang
,
S.
Li
et al., Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors.
Energy Environ. Sci.
9, 1299-1307 (
2016).
https://doi.org/10.1039/C5EE03633J
|
| 85. |
Z.
Wang
,
Z.
Zhao
,
Y.
Zhang
,
X.
Yang
,
X.
Sun
et al., Spatially self-confined formation of ultrafine NiCoO
2Nanoparticles@Ultralong amorphous N-doped carbon nanofibers as an anode towards efficient capacitive Li
+storage.
Chemistry
25, 863-873 (
2019).
https://doi.org/10.1002/chem.201804823
|