| 1. |
M. Pilz da
Cunha
,
M.G.
Debije
,
A.P.H.J.
Schenning
, Bioinspired light-driven soft robots based on liquid crystal polymers.
Chem. Soc. Rev.
49, 6568-6578 (
2020).
https://doi.org/10.1039/d0cs00363h
|
| 2. |
|
| 3. |
J.
Ma
,
Y.
Yang
,
C.
Valenzuela
,
X.
Zhang
,
L.
Wang
et al., Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds.
Angew. Chem. Int. Ed.
61, e202116219 (
2022).
https://doi.org/10.1002/anie.202116219
|
| 4. |
S.
Iravani
,
R.S.
Varma
, Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances.
Mater. Adv.
3, 4783-4796 (
2022).
https://doi.org/10.1039/D2MA00151A
|
| 5. |
H.
Galinski
,
G.
Favraud
,
H.
Dong
,
J.S.T.
Gongora
,
G.
Favaro
et al., Scalable, ultra-resistant structural colors based on network metamaterials.
Light Sci. Appl.
6, e16233 (
2017).
https://doi.org/10.1038/lsa.2016.233
|
| 6. |
|
| 7. |
|
| 8. |
S.D.
Rezaei
,
Z.
Dong
,
J.Y.
Chan
,
J.
Trisno
,
R.J.
Ng
,
Q.
Ruan
,
C.W.
Qiu
,
N.A.
Mortensen
,
J.K.
Yang
, Nanophotonic structural colors.
ACS Photonics
8, 18-33 (
2021).
https://doi.org/10.1021/acsphotonics.0c00947
|
| 9. |
V.
Shukla
, The tunable electric and magnetic properties of 2D MXenes and their potential applications.
Mater. Adv.
1, 3104-3121 (
2020).
https://doi.org/10.1039/D0MA00548G
|
| 10. |
|
| 11. |
X.
Zhan
,
C.
Si
,
J.
Zhou
,
Z.
Sun
, MXene and MXene-based composites: synthesis, properties and environment-related applications.
Nanoscale Horiz.
5, 235-258 (
2020).
https://doi.org/10.1039/C9NH00571D
|
| 12. |
A.
Ahmed
,
S.
Sharma
,
B.
Adak
,
M.M.
Hossain
,
A.M.
LaChance
et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics.
InfoMat
4, e12295 (
2022).
https://doi.org/10.1002/inf2.12295
|
| 13. |
Z.
Chen
,
H.
Wang
,
Y.
Cao
,
Y.
Chen
,
O.
Akkus
et al., Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots.
Matter
6, 3803-3837 (
2023).
https://doi.org/10.1016/j.matt.2023.08.011
|
| 14. |
|
| 15. |
Z.-H.
Tang
,
W.-B.
Zhu
,
Y.-Q.
Mao
,
Z.-C.
Zhu
,
Y.-Q.
Li
et al., Multiresponsive Ti
3C
2T
xMXene-based actuators enabled by dual-mechanism synergism for soft robotics.
ACS Appl. Mater. Interfaces
14, 21474-21485 (
2022).
https://doi.org/10.1021/acsami.2c03157
|
| 16. |
|
| 17. |
R.
Giménez
,
B.
Serrano
,
V.
San-Miguel
,
J.C.
Cabanelas
, Recent advances in MXene/epoxy composites: trends and prospects.
Polymers
14, 1170 (
2022).
https://doi.org/10.3390/polym14061170
|
| 18. |
|
| 19. |
P.G.
Grützmacher
,
S.
Suarez
,
A.
Tolosa
,
C.
Gachot
,
G.
Song
et al., Superior wear-resistance of Ti
3C
2T
xmultilayer coatings.
ACS Nano
15, 8216-8224 (
2021).
https://doi.org/10.1021/acsnano.1c01555
|
| 20. |
|
| 21. |
|
| 22. |
A.
Rosenkranz
,
M.
Marian
, Combining surface textures and MXene coatings—towards enhanced wear-resistance and durability.
Surf. Topogr. Metrol. Prop.
10, 033001 (
2022).
https://doi.org/10.1088/2051-672x/ac7f4a
|
| 23. |
M.
Yang
,
Y.
Xu
,
X.
Zhang
,
H.K.
Bisoyi
,
P.
Xue
et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics.
Adv. Funct. Mater.
32, 2270152 (
2022).
https://doi.org/10.1002/adfm.202270152
|
| 24. |
T.
Zhao
,
H.
Liu
,
L.
Yuan
,
X.
Tian
,
X.
Xue
et al., A multi-responsive MXene-based actuator with integrated sensing function.
Adv. Mater. Interfaces
9, 2101948 (
2022).
https://doi.org/10.1002/admi.202101948
|
| 25. |
|
| 26. |
P.
Xue
,
H.K.
Bisoyi
,
Y.
Chen
,
H.
Zeng
,
J.
Yang
et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets.
Angew. Chem. Int. Ed.
60, 3390-3396 (
2021).
https://doi.org/10.1002/anie.202014533
|
| 27. |
|
| 28. |
J.
Cao
,
Z.
Zhou
,
Q.
Song
,
K.
Chen
,
G.
Su
et al., Ultrarobust Ti
3C
2T
xMXene-based soft actuators
viabamboo-inspired mesoscale assembly of hybrid nanostructures.
ACS Nano
14, 7055-7065 (
2020).
https://doi.org/10.1021/acsnano.0c01779
|
| 29. |
S.
Ma
,
P.
Xue
,
C.
Valenzuela
,
X.
Zhang
,
Y.
Chen
et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators.
Adv. Funct. Mater.(
2023).
https://doi.org/10.1002/adfm.202309899
|
| 30. |
P.
Xue
,
Y.
Chen
,
Y.
Xu
,
C.
Valenzuela
,
X.
Zhang
et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color.
Nano-Micro Lett.
15, 1 (
2022).
https://doi.org/10.1007/s40820-022-00977-4
|
| 31. |
V.
Hwang
,
A.B.
Stephenson
,
S.
Barkley
,
S.
Brandt
,
M.
Xiao
et al., Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering.
Proc. Natl. Acad. Sci. U.S.A.
118, e 2015551118 (
2021).
https://doi.org/10.1073/pnas.2015551118
|
| 32. |
|
| 33. |
A.D.
Khalid
,
N.
Ur-Rehman
,
G.H.
Tariq
,
S.
Ullah
,
S.A.
Buzdar
et al., Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species.
Chemosphere
310, 136885 (
2023).
https://doi.org/10.1016/j.chemosphere.2022.136885
|
| 34. |
|
| 35. |
S.V.
Patwardhan
,
J.R.H.
Manning
,
M.
Chiacchia
, Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities and challenges.
Curr. Opin. Green Sustain. Chem.
12, 110-116 (
2018).
https://doi.org/10.1016/j.cogsc.2018.08.004
|
| 36. |
Z.
Zhang
,
Z.
Chen
,
L.
Sun
,
X.
Zhang
,
Y.
Zhao
, Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains.
Nano Res.
12, 1579-1584 (
2019).
https://doi.org/10.1007/s12274-019-2395-7
|
| 37. |
L.
Cai
,
Y.
Wang
,
L.
Sun
,
J.
Guo
,
Y.
Zhao
, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles.
Adv. Opt. Mater.
9, 2100831 (
2021).
https://doi.org/10.1002/adom.202100831
|
| 38. |
Y.
Feng
,
J.
Sun
,
L.
Xu
,
W.
Hong
, Angle-independent structurally colored materials with superhydrophobicity and self-healing capability.
Adv. Mater. Interfaces
8, 2001950 (
2021).
https://doi.org/10.1002/admi.202001950
|
| 39. |
J.
Chen
,
H.-M.
Liu
,
H.
Ren
,
Y.-F.
Zhang
,
H.-Y.
Hou
et al., Semitransparent organic solar cells with viewing-angle-independent Janus structural colors.
Adv. Opt. Mater.
11, 2201848 (
2023).
https://doi.org/10.1002/adom.202201848
|
| 40. |
J.
Zhou
,
P.
Han
,
M.
Liu
,
H.
Zhou
,
Y.
Zhang
et al., Self-healable organogel nanocomposite with angle-independent structural colors.
Angew. Chem. Int. Ed.
56, 10462-10466 (
2017).
https://doi.org/10.1002/anie.201705462
|
| 41. |
J.
Mu
,
G.
Wang
,
H.
Yan
,
H.
Li
,
X.
Wang
et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching.
Nat. Commun.
9, 590 (
2018).
https://doi.org/10.1038/s41467-018-03032-2
|
| 42. |
|
| 43. |
J.
Gao
,
Y.
Tang
,
D.
Martella
,
J.
Guo
,
D.S.
Wiersma
et al., Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems.
Respon. Mater.
1, 230008 (
2023).
https://doi.org/10.1002/rpm.20230008
|
| 44. |
Z.
Liu
,
H.K.
Bisoyi
,
Y.
Huang
,
M.
Wang
,
H.
Yang
et al., Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers.
Angew. Chem. Int. Ed.
61, e202115755 (
2022).
https://doi.org/10.1002/anie.202115755
|
| 45. |
|
| 46. |
X.
Li
,
Y.
Yang
,
C.
Valenzuela
,
X.
Zhang
,
P.
Xue
et al., Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins.
ACS Nano
17, 12829-12841 (
2023).
https://doi.org/10.1021/acsnano.3c04199
|
| 47. |
X.
Zhang
,
Y.
Yang
,
P.
Xue
,
C.
Valenzuela
,
Y.
Chen
et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage.
Angew. Chem. Int. Ed.
61, e202211030 (
2022).
https://doi.org/10.1002/anie.202211030
|
| 48. |
Y.
Hao
,
S.
Zhang
,
B.
Fang
,
F.
Sun
,
H.
Liu
et al., A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications.
Chin. J. Mech. Eng.
35, 37 (
2022).
https://doi.org/10.1186/s10033-022-00707-2
|
| 49. |
L.
Chang
,
D.
Wang
,
Z.
Huang
,
C.
Wang
,
J.
Torop
et al., A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion.
Adv. Funct. Mater.
33, 2212341 (
2023).
https://doi.org/10.1002/adfm.202212341
|
| 50. |
L.
Xu
,
F.
Xue
,
H.
Zheng
,
Q.
Ji
,
C.
Qiu
et al., An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light.
Nano Energy
103, 107848 (
2022).
https://doi.org/10.1016/j.nanoen.2022.107848
|
| 51. |
|
| 52. |
|
| 53. |
X.
Tang
,
H.
Li
,
T.
Ma
,
Y.
Yang
,
J.
Luo
et al., A review of soft actuator motion: actuation, design, manufacturing and applications.
Actuators
11, 331 (
2022).
https://doi.org/10.3390/act11110331
|
| 54. |
A.
Pagoli
,
F.
Chapelle
,
J.-A.
Corrales-Ramon
,
Y.
Mezouar
,
Y.
Lapusta
, Review of soft fluidic actuators: classification and materials modeling analysis.
Smart Mater. Struct.
31, 013001 (
2022).
https://doi.org/10.1088/1361-665x/ac383a
|
| 55. |
H.S.
Kang
,
S.W.
Han
,
C.
Park
,
S.W.
Lee
,
H.
Eoh
et al., 3D touchless multiorder reflection structural color sensing display.
Sci. Adv.
6, eabb5769 (
2020).
https://doi.org/10.1126/sciadv.abb5769
|
| 56. |
|
| 57. |
F.
Meng
,
Z.
Wang
,
S.
Zhang
,
B.
Ju
,
B.
Tang
, Bioinspired quasi-amorphous structural color materials toward architectural designs.
Cell Rep. Phys. Sci.
2, 100499 (
2021).
https://doi.org/10.1016/j.xcrp.2021.100499
|
| 58. |
L.
Xu
,
H.
Zheng
,
F.
Xue
,
Q.
Ji
,
C.
Qiu
et al., Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion.
Chem. Eng. J.
463, 142392 (
2023).
https://doi.org/10.1016/j.cej.2023.142392
|
| 59. |
M.
Xu
,
L.
Li
,
W.
Zhang
,
Z.
Ren
,
J.
Liu
et al., MXene-based soft actuators with multiresponse and diverse applications by a simple method.
Macromol. Mater. Eng.
308, 2300200 (
2023).
https://doi.org/10.1002/mame.202300200
|
| 60. |
A.
Ahmed
,
M.M.
Hossain
,
B.
Adak
,
S.
Mukhopadhyay
, Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications.
Chem. Mater.
32, 10296-10320 (
2020).
https://doi.org/10.1021/acs.chemmater.0c03392
|
| 61. |
F.
Bian
,
L.
Sun
,
L.
Cai
,
Y.
Wang
,
Y.
Zhao
, Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding.
Proc. Natl. Acad. Sci. U.S.A.
117, 22736-22742 (
2020).
https://doi.org/10.1073/pnas.2011660117
|
| 62. |
J.
Chen
,
X.
Yuan
,
F.
Lyu
,
Q.
Zhong
,
H.
Hu
et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction.
J. Mater. Chem. A
7, 1281-1286 (
2019).
https://doi.org/10.1039/C8TA10574J
|
| 63. |
L.P.
Hao
,
A.
Hanan
,
R.
Walvekar
,
M.
Khalid
,
F.
Bibi
et al., Synergistic integration of MXene and metal-organic frameworks for enhanced electrocatalytic hydrogen evolution in an alkaline environment.
Catalysts
13, 802 (
2023).
https://doi.org/10.3390/catal13050802
|
| 64. |
B.
Cheng
,
P.
Wu
, Scalable fabrication of kevlar/Ti
3C
2T
xMXene intelligent wearable fabrics with multiple sensory capabilities.
ACS Nano
15, 8676-8685 (
2021).
https://doi.org/10.1021/acsnano.1c00749
|
| 65. |
|
| 66. |
|
| 67. |
J.
Zhang
,
N.
Kong
,
S.
Uzun
,
A.
Levitt
,
S.
Seyedin
et al., Scalable manufacturing of free-standing, strong Ti
3C
2T
xMXene films with outstanding conductivity.
Adv. Mater.
32, e2001093 (
2020).
https://doi.org/10.1002/adma.202001093
|
| 68. |
M. Lalegani
Dezaki
,
M.
Bodaghi
, A review of recent manufacturing technologies for sustainable soft actuators.
Int. J. Precis. Eng. Manuf. Green Technol.
10, 1661-1710 (
2023).
https://doi.org/10.1007/s40684-023-00533-4
|
| 69. |
A.
Bhat
,
S.
Anwer
,
K.S.
Bhat
,
M.I.H.
Mohideen
,
K.
Liao
et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications.
NPJ 2D Mater. Appl.
5, 61 (
2021).
https://doi.org/10.1038/s41699-021-00239-8
|
| 70. |
|
| 71. |
P.
Xue
,
C.
Valenzuela
,
S.
Ma
,
X.
Zhang
,
J.
Ma
et al., Highly conductive MXene/PEDOT: PSS-integrated poly(
N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators.
Adv. Funct. Mater.
33, 2214867 (
2023).
https://doi.org/10.1002/adfm.202214867
|
| 72. |
J.
Ma
,
Z.
Cui
,
Y.
Du
,
J.
Zhang
,
C.
Sun
et al., Wearable fiber-based supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors.
Adv. Fiber Mater.
4, 1535-1544 (
2022).
https://doi.org/10.1007/s42765-022-00187-y
|
| 73. |
J.
Ma
,
K.
Yang
,
Y.
Jiang
,
L.
Shen
,
H.
Ma
et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring.
Cell Rep. Phys. Sci.
3, 100908 (
2022).
https://doi.org/10.1016/j.xcrp.2022.100908
|
| 74. |
Y.
Hu
,
L.
Yang
,
Q.
Yan
,
Q.
Ji
,
L.
Chang
et al., Self-locomotive soft actuator based on asymmetric microstructural Ti
3C
2T
xMXene film driven by natural sunlight fluctuation.
ACS Nano
15, 5294-5306 (
2021).
https://doi.org/10.1021/acsnano.0c10797
|
| 75. |
P.
Li
,
N.
Su
,
Z.
Wang
,
J.
Qiu
, A Ti
3C
2T
xMXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability.
ACS Nano
15, 16811-16818 (
2021).
https://doi.org/10.1021/acsnano.1c07186
|
| 76. |
X.
Guan
,
Z.
Yang
,
M.
Zhou
,
L.
Yang
,
R.
Peymanfar
et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption.
Small Struct.
3, 2200102 (
2022).
https://doi.org/10.1002/sstr.202200102
|
| 77. |
A.
Rozmysłowska-Wojciechowska
,
A.
Szuplewska
,
T.
Wojciechowski
,
S.
Poźniak
,
J.
Mitrzak
et al., A simple, low-cost and green method for controlling the cytotoxicity of MXenes.
Mater Sci. Eng. C Mater. Biol. Appl.
111, 110790 (
2020).
https://doi.org/10.1016/j.msec.2020.110790
|
| 78. |
|
| 79. |
|
| 80. |
H.
Meng
,
X.
Yang
,
Y.
Wang
,
C.
Wang
,
W.
Ye
et al., Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature.
Mater. Today Chem.
24, 100855 (
2022).
https://doi.org/10.1016/j.mtchem.2022.100855
|
| 81. |
G.P.
Awasthi
,
B.
Maharjan
,
S.
Shrestha
,
D.P.
Bhattarai
,
D.
Yoon
et al., Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone-MXene electrospun fibers.
Colloids Surf. A Physicochem. Eng. Aspects
586, 124282 (
2020).
https://doi.org/10.1016/j.colsurfa.2019.124282
|
| 82. |
Y.
Liu
,
H.
Zhou
,
W.
Zhou
,
S.
Meng
,
C.
Qi
et al. Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/mxenes electrode and hydrogel electrolyte.
Adv. Energy Mater.
11, 2101329 (
2021).
https://doi.org/10.1002/aenm.202101329
|
| 83. |
S.
Sagadevan
,
W.-C.
Oh
, Comprehensive utilization and biomedical application of MXenes: a systematic review of cytotoxicity and biocompatibility.
J. Drug Deliv. Sci. Technol.
85, 104569 (
2023).
https://doi.org/10.1016/j.jddst.2023.104569
|
| 84. |
K.
Chen
,
Y.
Hu
,
F.
Wang
,
M.
Liu
,
P.
Liu
et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors.
Colloids Surf. A Physicochem. Eng. Aspects
645, 128897 (
2022).
https://doi.org/10.1016/j.colsurfa.2022.128897
|
| 85. |
H.
Li
,
X.
Ru
,
Y.
Song
,
H.
Wang
,
C.
Yang
et al., Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding.
Compos. Sci. Technol.
227, 109602 (
2022).
https://doi.org/10.1016/j.compscitech.2022.109602
|
| 86. |
A.
Zarepour
,
S.
Ahmadi
,
N.
Rabiee
,
A.
Zarrabi
,
S.
Iravani
, Self-healing MXene- and graphene-based composites: properties and applications.
Nano-Micro Lett.
15, 100 (
2023).
https://doi.org/10.1007/s40820-023-01074-w
|
| 87. |
|
| 88. |
S.
Luo
,
Z.
Wu
,
J.
Zhao
,
Z.
Luo
,
Q.
Qiu
et al., ZIF-67 derivative decorated MXene for a highly integrated flexible self-powered photodetector.
ACS Appl. Mater. Interfaces
14, 19725-19735 (
2022).
https://doi.org/10.1021/acsami.2c03148
|
| 89. |
M.
Wang
,
W.
Liu
,
X.
Shi
,
Y.
Cong
,
S.
Lin
et al., Self-powered and low-temperature resistant MXene-modified electronic-skin for multifunctional sensing.
Chem. Commun.
57, 8790-8793 (
2021).
https://doi.org/10.1039/D1CC02211C
|
| 90. |
Q.
Yi
,
X.
Pei
,
P.
Das
,
H.
Qin
,
S.W.
Lee
et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring.
Nano Energy
101, 107511 (
2022).
https://doi.org/10.1016/j.nanoen.2022.107511
|
| 91. |
|
| 92. |
H.
Huang
,
R.
Jiang
,
Y.
Feng
,
H.
Ouyang
,
N.
Zhou
et al., Recent development and prospects of surface modification and biomedical applications of MXenes.
Nanoscale
12, 1325-1338 (
2020).
https://doi.org/10.1039/C9NR07616F
|
| 93. |
|