| 1. |
Y
.
Gong
,
B
.
Wang
,
H
.
Ren
,
D
.
Li
,
D
.
Wang
et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges.
Nano-Micro Lett.
15, 208 (
2023).
https://doi.org/10.1007/s40820-023-01177-4
|
| 2. |
P
.
Ruan
,
S
.
Liang
,
B
.
Lu
,
H.J
.
Fan
,
J
.
Zhou
, Design strategies for high-energy-density aqueous zinc batteries.
Angew. Chem. Int. Ed.
61, 2200598 (
2022).
https://doi.org/10.1002/anie.202200598
|
| 3. |
J.-L
.
Yang
,
J
.
Li
,
J.-W
.
Zhao
,
K
.
Liu
,
P
.
Yang
et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer.
Adv. Mater.
34, e2202382 (
2022).
https://doi.org/10.1002/adma.202202382
|
| 4. |
|
| 5. |
Y
.
Song
,
P
.
Ruan
,
C
.
Mao
,
Y
.
Chang
,
L
.
Wang
et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries.
Nano-Micro Lett.
14, 218 (
2022).
https://doi.org/10.1007/s40820-022-00960-z
|
| 6. |
J
.
Lee
,
H
.
Lee
,
C
.
Bak
,
Y
.
Hong
,
D
.
Joung
et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries.
Nano-Micro Lett.
15, 97 (
2023).
https://doi.org/10.1007/s40820-023-01072-y
|
| 7. |
X
.
Guo
,
G
.
He
, Opportunities and challenges of zinc anodes in rechargeable aqueous batteries.
J. Mater. Chem. A
11, 11987-12001 (
2023).
https://doi.org/10.1039/d3ta01904g
|
| 8. |
|
| 9. |
R
.
Chen
,
W
.
Zhang
,
Q
.
Huang
,
C
.
Guan
,
W
.
Zong
et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective.
Nano-Micro Lett.
15, 81 (
2023).
https://doi.org/10.1007/s40820-023-01050-4
|
| 10. |
D. Gomez
Vazquez
,
T.P
.
Pollard
,
J
.
Mars
,
J.M
.
Yoo
,
H.-G
.
Steinrück
et al., Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries.
Energy Environ. Sci.
16, 1982-1991 (
2023).
https://doi.org/10.1039/D3EE00205E
|
| 11. |
M
.
Li
,
X
.
Wang
,
J
.
Hu
,
J
.
Zhu
,
C
.
Niu
et al., Comprehensive H
2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode.
Angew. Chem. Int. Ed.
62, 2215552 (
2023).
https://doi.org/10.1002/anie.202215552
|
| 12. |
Z
.
Meng
,
Y
.
Jiao
,
P
.
Wu
, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer.
Angew. Chem. Int. Ed.
62, 2307271 (
2023).
https://doi.org/10.1002/anie.202307271
|
| 13. |
X
.
Li
,
D
.
Wang
,
F
.
Ran
, Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes.
Energy Storage Mater.
56, 351-393 (
2023).
https://doi.org/10.1016/j.ensm.2023.01.034
|
| 14. |
E
.
Lizundia
,
D
.
Kundu
, Advances in natural biopolymer-based electrolytes and separators for battery applications.
Adv. Funct. Mater.
31, 2005646 (
2021).
https://doi.org/10.1002/adfm.202005646
|
| 15. |
X
.
Ge
,
W
.
Zhang
,
F
.
Song
,
B
.
Xie
,
J
.
Li
et al., Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries.
Adv. Funct. Mater.
32, 2200429 (
2022).
https://doi.org/10.1002/adfm.202200429
|
| 16. |
|
| 17. |
L
.
Hong
,
X
.
Wu
,
Y.-S
.
Liu
,
C
.
Yu
,
Y
.
Liu
et al., Self-adapting and self-healing hydrogel interface with fast Zn
2+transport kinetics for highly reversible Zn anodes.
Adv. Funct. Mater.
33, 2300952 (
2023).
https://doi.org/10.1002/adfm.202300952
|
| 18. |
J.-H
.
Park
,
S. Hyun
Park
,
D
.
Joung
,
C
.
Kim
, Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries.
Chem. Eng. J.
433, 133532 (
2022).
https://doi.org/10.1016/j.cej.2021.133532
|
| 19. |
H
.
Tu
,
M
.
Zhu
,
B
.
Duan
,
L
.
Zhang
, Recent progress in high-strength and robust regenerated cellulose materials.
Adv. Mater.
33, e2000682 (
2021).
https://doi.org/10.1002/adma.202000682
|
| 20. |
J
.
Fu
,
H
.
Wang
,
P
.
Xiao
,
C
.
Zeng
,
Q
.
Sun
et al., A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose.
Energy Storage Mater.
48, 191-191.f6 (
2022).
https://doi.org/10.1016/j.ensm.2022.02.052
|
| 21. |
D
.
Wang
,
H
.
Li
,
Z
.
Liu
,
Z
.
Tang
,
G
.
Liang
et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO
2battery with superior shear resistance.
Small
14, e1803978 (
2018).
https://doi.org/10.1002/smll.201803978
|
| 22. |
F
.
Mo
,
Z
.
Chen
,
G
.
Liang
,
D
.
Wang
,
Y
.
Zhao
et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO
2batteries with superior rate capabilities.
Adv. Energy Mater.
10, 2000035 (
2020).
https://doi.org/10.1002/aenm.202000035
|
| 23. |
D
.
Zhao
,
J
.
Huang
,
Y
.
Zhong
,
K
.
Li
,
L
.
Zhang
et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking.
Adv. Funct. Mater.
26, 6279-6287 (
2016).
https://doi.org/10.1002/adfm.201601645
|
| 24. |
F
.
Wan
,
L
.
Zhang
,
X
.
Wang
,
S
.
Bi
,
Z
.
Niu
et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism.
Adv. Funct. Mater.
28, 1804975 (
2018).
https://doi.org/10.1002/adfm.201804975
|
| 25. |
J
.
Zhou
,
C
.
Chang
,
R
.
Zhang
,
L
.
Zhang
, Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution.
Macromol. Biosci.
7, 804-809 (
2007).
https://doi.org/10.1002/mabi.200700007
|
| 26. |
C
.
Chang
,
L
.
Zhang
,
J
.
Zhou
,
L
.
Zhang
,
J.F
.
Kennedy
, Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions.
Carbohydr. Polym.
82, 122-127 (
2010).
https://doi.org/10.1016/j.carbpol.2010.04.033
|
| 27. |
D
.
Klemm
,
B
.
Heublein
,
H.-P
.
Fink
,
A
.
Bohn
, Cellulose: fascinating biopolymer and sustainable raw material.
Angew. Chem. Int. Ed.
44, 3358-3393 (
2005).
https://doi.org/10.1002/anie.200460587
|
| 28. |
M
.
Chen
,
W
.
Zhou
,
A
.
Wang
,
A
.
Huang
,
J
.
Chen
et al., Anti-freezing flexible aqueous Zn-MnO
2batteries working at -35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte.
J. Mater. Chem. A
8, 6828-6841 (
2020).
https://doi.org/10.1039/D0TA01553A
|
| 29. |
M
.
Chen
,
J
.
Chen
,
W
.
Zhou
,
X
.
Han
,
Y
.
Yao
et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO
2batteries.
Adv. Mater.
33, e2007559 (
2021).
https://doi.org/10.1002/adma.202007559
|
| 30. |
L
.
Xu
,
T
.
Meng
,
X
.
Zheng
,
T
.
Li
,
A.H
.
Brozena
et al., Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries.
Adv. Funct. Mater.
33, 2302098 (
2023).
https://doi.org/10.1002/adfm.202302098
|
| 31. |
D
.
Ye
,
C
.
Chang
,
L
.
Zhang
, High-strength and tough cellulose hydrogels chemically dual cross-linked by using low- and high-molecular-weight cross-linkers.
Biomacromol
20, 1989-1995 (
2019).
https://doi.org/10.1021/acs.biomac.9b00204
|
| 32. |
H
.
Zhang
,
X
.
Gan
,
Z
.
Song
,
J
.
Zhou
, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode.
Angew. Chem. Int. Ed.
62, 2217833 (
2023).
https://doi.org/10.1002/anie.202217833
|
| 33. |
T
.
Chen
,
Z
.
Shuang
,
J
.
Hu
,
Y
.
Zhao
,
D
.
Wei
et al., Freestanding 3D metallic micromesh for high-performance flexible transparent solid-state zinc batteries.
Small
18, e2201628 (
2022).
https://doi.org/10.1002/smll.202201628
|
| 34. |
|
| 35. |
M
.
Peng
,
X
.
Tang
,
K
.
Xiao
,
T
.
Hu
,
K
.
Yuan
et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries.
Angew. Chem. Int. Ed.
62, 2302701 (
2023).
https://doi.org/10.1002/anie.202302701
|
| 36. |
W
.
Zhang
,
F
.
Guo
,
H
.
Mi
,
Z.-S
.
Wu
,
C
.
Ji
et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors.
Adv. Energy Mater.
12, 2202219 (
2022).
https://doi.org/10.1002/aenm.202202219
|
| 37. |
W
.
Chen
,
S
.
Guo
,
L
.
Qin
,
L
.
Li
,
X
.
Cao
et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces.
Adv. Funct. Mater.
32, 2112609 (
2022).
https://doi.org/10.1002/adfm.202112609
|
| 38. |
F
.
Cao
,
B
.
Wu
,
T
.
Li
,
S
.
Sun
,
Y
.
Jiao
et al., Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance.
Nano Res.
15, 2030-2039 (
2022).
https://doi.org/10.1007/s12274-021-3770-8
|
| 39. |
C
.
Kim
,
B.Y
.
Ahn
,
T.S
.
Wei
,
Y
.
Jo
,
S
.
Jeong
et al., High-power aqueous zinc-ion batteries for customized electronic devices.
ACS Nano
12, 11838-11846 (
2018).
https://doi.org/10.1021/acsnano.8b02744
|
| 40. |
J
.
Shi
,
T
.
Sun
,
J
.
Bao
,
S
.
Zheng
,
H
.
Du
et al., “water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries.
Adv. Funct. Mater.
31, 2102035 (
2021).
https://doi.org/10.1002/adfm.202102035
|
| 41. |
|
| 42. |
|
| 43. |
|
| 44. |
D
.
Feng
,
Y
.
Jiao
,
P
.
Wu
, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range.
Angew. Chem. Int. Ed.
62, 2215060 (
2023).
https://doi.org/10.1002/anie.202215060
|
| 45. |
Y
.
Liu
,
Z
.
Dai
,
W
.
Zhang
,
Y
.
Jiang
,
J
.
Peng
et al., Sulfonic-group-grafted Ti
3C
2T
xMXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries.
ACS Nano
15, 9065-9075 (
2021).
https://doi.org/10.1021/acsnano.1c02215
|