| 1. |
|
| 2. |
|
| 3. |
|
| 4. |
E.
Abraham
,
V.
Cherpak
,
B.
Senyuk
,
J.B. ten
Hove
,
T.
Lee
et al., Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings.
Nat. Energy
8, 381-396 (
2023).
https://doi.org/10.1038/s41560-023-01226-7
|
| 5. |
L.
Zhao
,
X.
Lee
,
R.B.
Smith
,
K.
Oleson
, Strong contributions of local background climate to urban heat islands.
Nature
511, 216-219 (
2014).
https://doi.org/10.1038/nature13462
|
| 6. |
S.
Wang
,
Y.
Zhou
,
T.
Jiang
,
R.
Yang
,
G.
Tan
et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission.
Nano Energy
89, 106440 (
2021).
https://doi.org/10.1016/j.nanoen.2021.106440
|
| 7. |
B.
Yu
,
Y.
Wang
,
Y.
Zhang
,
Z.
Zhang
, Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation.
Nano-Micro Lett.
15, 94 (
2023).
https://doi.org/10.1007/s40820-023-01063-z
|
| 8. |
L.
Cai
,
A.Y.
Song
,
W.
Li
,
P.-C.
Hsu
,
D.
Lin
et al., Spectrally selective nanocomposite textile for outdoor personal cooling.
Adv. Mater.
30, e1802152 (
2018).
https://doi.org/10.1002/adma.201802152
|
| 9. |
A.P.
Raman
,
M. Abou
Anoma
,
L.
Zhu
,
E.
Rephaeli
,
S.
Fan
, Passive radiative cooling below ambient air temperature under direct sunlight.
Nature
515, 540-544 (
2014).
https://doi.org/10.1038/nature13883
|
| 10. |
P.-C.
Hsu
,
A.Y.
Song
,
P.B.
Catrysse
,
C.
Liu
,
Y.
Peng
et al., Radiative human body cooling by nanoporous polyethylene textile.
Science
353, 1019-1023 (
2016).
https://doi.org/10.1126/science.aaf5471
|
| 11. |
A.
Leroy
,
B.
Bhatia
,
C.
Kelsall
,
A.
Castillejo-Cuberos
et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel.
Sci. Adv.
5, eaat9480 (
2019).
https://doi.org/10.1126/sciadv.aat9480
|
| 12. |
N.N.
Shi
,
C.C.
Tsai
,
F.
Camino
,
G.D.
Bernard
,
N.
Yu
et al., Thermal physiology. Keeping cool: enhanced optical reflection and radiative heat dissipation in saharan silver ants.
Science
349, 298-301 (
2015).
https://doi.org/10.1126/science.aab3564
|
| 13. |
Q.
Wu
,
Y.
Cui
,
G.
Xia
,
J.
Yang
,
S.
Du
et al., Passive daytime radiative cooling coatings with renewable self-cleaning functions.
Chin. Chemical Lett.
35, 108687 (
2024).
https://doi.org/10.1016/j.cclet.2023.108687
|
| 14. |
|
| 15. |
Q.
Liu
,
A.W.
Frazier
,
X.
Zhao
,
J.A. De La
Cruz
,
A.J.
Hess
et al., Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence.
Nano Energy
48, 266-274 (
2018).
https://doi.org/10.1016/j.nanoen.2018.03.029
|
| 16. |
|
| 17. |
S.
Luo
,
L.
Peng
,
Y.
Xie
,
X.
Cao
,
X.
Wang
et al., Flexible large-area graphene films of 50-600 nm thickness with high carrier mobility.
Nano-Micro Lett.
15, 61 (
2023).
https://doi.org/10.1007/s40820-023-01032-6
|
| 18. |
Z.
Jiao
,
W.
Huyan
,
F.
Yang
,
J.
Yao
,
R.
Tan
et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure.
Nano-Micro Lett.
14, 173 (
2022).
https://doi.org/10.1007/s40820-022-00904-7
|
| 19. |
O.A.
Tafreshi
,
Z.
Saadatnia
,
S.
Ghaffari-Mosanenzadeh
,
T.
Chen
,
S.
Kiddell
et al., Flexible and shape-configurable PI composite aerogel films with tunable dielectric properties.
Compos. Commun.
34, 101274 (
2022).
https://doi.org/10.1016/j.coco.2022.101274
|
| 20. |
X.
Yu
,
X.
Ren
,
X.
Wang
,
G.H.
Tang
,
M.
Du
, A high thermal stability core-shell aerogel structure for high-temperature solar thermal conversion.
Compos. Commun.
37, 101440 (
2023).
https://doi.org/10.1016/j.coco.2022.101440
|
| 21. |
X.
Li
,
H.
He
,
Q.
Liu
,
C.
Zhao
,
H.
Chen
, Fabrication and property of hydrophobic polyvinyl alcohol/clay aerogel via irradiation-crosslinking and ambient-drying.
Compos. Commun.
36, 101359 (
2022).
https://doi.org/10.1016/j.coco.2022.101359
|
| 22. |
|
| 23. |
E.
Rephaeli
,
A.
Raman
,
S.
Fan
, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling.
Nano Lett.
13, 1457-1461 (
2013).
https://doi.org/10.1021/nl4004283
|
| 24. |
Z.
Chen
,
L.
Zhu
,
A.
Raman
,
S.
Fan
, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.
Nat. Commun.
7, 13729 (
2016).
https://doi.org/10.1038/ncomms13729
|
| 25. |
K.
Xu
,
Y.
Wang
,
B.
Zhang
,
C.
Zhang
,
T.
Liu
, Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity.
Compos. Commun.
24, 100677 (
2021).
https://doi.org/10.1016/j.coco.2021.100677
|
| 26. |
R.
Zhao
,
E.
Songfeng
,
D.
Ning
,
Q.
Ma
,
B.
Geng
et al., Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions.
Compos. Commun.
35, 101322 (
2022).
https://doi.org/10.1016/j.coco.2022.101322
|
| 27. |
M.
He
,
M.K.
Alam
,
H.
Liu
,
M.
Zheng
,
J.
Zhao
et al., Textile waste derived cellulose based composite aerogel for efficient solar steam generation.
Compos. Commun.
28, 100936 (
2021).
https://doi.org/10.1016/j.coco.2021.100936
|
| 28. |
J.
Wu
,
M.
Zhang
,
M.
Su
,
Y.
Zhang
,
J.
Liang
et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating.
Adv. Fiber Mater.
4, 1545-1555 (
2022).
https://doi.org/10.1007/s42765-022-00188-x
|
| 29. |
T.
Xue
,
C.
Zhu
,
X.
Feng
,
Q.
Wali
,
W.
Fan
et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments.
Adv. Fiber Mater.
4, 1118-1128 (
2022).
https://doi.org/10.1007/s42765-022-00145-8
|
| 30. |
|
| 31. |
S.
Tang
,
M.
Ma
,
X.
Zhang
,
X.
Zhao
,
J.
Fan
et al., Covalent cross-links enable the formation of ambient-dried biomass aerogels through the activation of a triazine derivative for energy storage and generation.
Adv. Funct. Mater.
32, 2205417 (
2022).
https://doi.org/10.1002/adfm.202205417
|
| 32. |
H.
Françon
,
Z.
Wang
,
A.
Marais
,
K.
Mystek
,
A.
Piper
et al. Ambient-dried, 3D-printable and electrically conducting cellulose nanofiber aerogels by inclusion of functional polymers.
Adv. Funct. Mater.
30, 1909383 (
2020).
https://doi.org/10.1002/adfm.201909383
|
| 33. |
Z.
Ye
,
C.
Hu
,
J.
Wang
,
H.
Liu
,
L.
Li
et al., Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation.
Exploration
3, 20230002 (
2023).
https://doi.org/10.1002/EXP.20230002
|
| 34. |
L.
Wang
,
Y.
Song
,
L.
Li
,
L.
Tao
,
M.
Yan
et al., Development of robust perovskite single crystal radiation detectors with high spectral resolution through synergetic trap deactivation and self-healing.
InfoMat
5, e12461 (
2023).
https://doi.org/10.1002/inf2.12461
|
| 35. |
J.
Yang
,
X.
Shen
,
W.
Yang
,
J.-K.
Kim
, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications.
Prog. Mater. Sci.
133, 101054 (
2023).
https://doi.org/10.1016/j.pmatsci.2022.101054
|
| 36. |
R.J.
Moon
,
A.
Martini
,
J.
Nairn
,
J.
Simonsen
,
J.
Youngblood
, Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites.
Chem. Soc. Rev.
40, 3941-3994 (
2011).
https://doi.org/10.1039/C0CS00108B
|
| 37. |
X.
Han
,
Z.
Wang
,
L.
Ding
,
L.
Chen
,
F.
Wang
et al., Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel.
Chin. Chemical Lett.
32, 3105-3108 (
2021).
https://doi.org/10.1016/j.cclet.2021.03.044
|
| 38. |
T.
Xue
,
Y.
Yang
,
D.
Yu
,
Q.
Wali
,
Z.
Wang
et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection.
Nano-Micro Lett.
15, 45 (
2023).
https://doi.org/10.1007/s40820-023-01017-5
|
| 39. |
Y.
Deng
,
Y.
Yang
,
Y.
Xiao
,
H.-L.
Xie
,
R.
Lan
et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation.
Adv. Funct. Mater.
33, 2301319 (
2023).
https://doi.org/10.1002/adfm.202301319
|
| 40. |
H.
Lai
,
Z.
Chen
,
H.
Zhuo
,
Y.
Hu
,
X.
Zhao
et al., Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel.
Chin. Chemical Lett.
35, 108331 (
2024).
https://doi.org/10.1016/j.cclet.2023.108331
|
| 41. |
J.
Nemoto
,
T.
Saito
,
A.
Isogai
, Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters.
ACS Appl. Mater. Interfaces
7, 19809-19815 (
2015).
https://doi.org/10.1021/acsami.5b05841
|
| 42. |
B.
Wicklein
,
A.
Kocjan
,
G.
Salazar-Alvarez
,
F.
Carosio
,
G.
Camino
et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide.
Nat. Nanotechnol.
10, 277-283 (
2015).
https://doi.org/10.1038/nnano.2014.248
|
| 43. |
R.
Zhang
,
B.
Li
,
Y.
Yang
,
N.
Wu
,
Z.
Sui
et al., Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption.
Nano Res.
16, 7931-7940 (
2023).
https://doi.org/10.1007/s12274-023-5521-5
|
| 44. |
M.
Li
,
X.
Chen
,
X.
Li
,
J.
Dong
,
X.
Zhao
et al., Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications.
Adv. Fiber Mater.
4, 1267-1277 (
2022).
https://doi.org/10.1007/s42765-022-00175-2
|
| 45. |
X.
Yang
,
E.D.
Cranston
, Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties.
Chem. Mater.
26, 6016-6025 (
2014).
https://doi.org/10.1021/cm502873c
|
| 46. |
W.
Chen
,
Q.
Zhang
,
K.
Uetani
,
Q.
Li
,
P.
Lu
et al., Absorption materials: sustainable carbon aerogels derived from nanofibrillated cellulose as high-performance absorption materials.
Adv. Mater. Interfaces
3, 9 (
2016).
https://doi.org/10.1002/admi.201600004
|
| 47. |
S.
Gamage
,
D.
Banerjee
,
M.M.
Alam
,
T.
Hallberg
,
C.
Åkerlind
et al., Reflective and transparent cellulose-based passive radiative coolers.
Cellulose
28, 9383-9393 (
2021).
https://doi.org/10.1007/s10570-021-04112-1
|
| 48. |
C.
Cai
,
Z.
Wei
,
C.
Ding
,
B.
Sun
,
W.
Chen
et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building.
Nano Lett.
22, 4106-4114 (
2022).
https://doi.org/10.1021/acs.nanolett.2c00844
|
| 49. |
|