
J Shanghai Jiaotong Univ Sci››2025,Vol. 30››Issue (5): 880-888.doi:10.1007/s12204-023-2682-z
Special Issue:计算机辅助设计与图形学
• Computing & Computer Technologies •Previous ArticlesNext Articles
董兆贤,于硕,申彦明
Received:2023-06-29Accepted:2023-07-20Online:2025-09-26Published:2023-12-21CLC Number:
DONG Zhaoxian, YU Shuo, SHEN Yanming. Multi-Scale Dynamic Hypergraph Convolutional Network for Traffic Flow Forecasting[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 880-888.
[1] ZHANG J P, WANG F Y, WANG K F, et al. Data-driven intelligent transportation systems: A survey [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1624-1639. [2] XIA Y, SHI Z Q. Multi-head attention spatio-temporal convolutional graph network for traffic flow prediction[J]. Application Research of Computers, 2023, 40(3): 776-770 (in Chinese). [3] REN J H, ZHU Y, MENG X F, et al. Prediction of urban traffic flow using dynamic spatio-temporal neural network [J]. Journal of Chinese Computer Systems, 2023, 44(3): 529-535 (in Chinese). [4] LI L, HU Z Y, YANG X B. Intelligent analysis of abnormal vehicle behavior based on a digital twin [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 587-597. [5] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [DB/OL]. (2016-09-09).https://arxiv.org/abs/1609.02907 [6] LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting [DB/OL]. (2017-07-06).https://arxiv.org/abs/1707.01926 [7] WU Z H, PAN S R, LONG G D, et al. Graph wavenet for deep spatial-temporal graph modeling [C]// 28th International Joint Conference on Artificial Intelligence. Macao: ACM, 2019: 1907-1913. [8] DRUCKER H, BURGES C J, KAUFMAN L, et al. Duality, geometry, and support vector regression [M]//Advances in neural information processing systems 14. Cambridge: TheMIT Press, 2002 [9] MAKRIDAKIS S, HIBON M. ARMA models and the box-jenkins methodology [J]. Journal of Forecasting, 1997, 16(3): 147-163. [10] YU B, YIN H T, ZHU Z X.Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting [C]// Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2018: 3634-3640. [11] BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [C]// 34th International Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 17804-17815. [12] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. [13] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. [14] FANG Z, LONG Q Q, SONG G J, et al. Spatial-temporal graph ODE networks for traffic flow forecasting [C]// 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Singapore. New York: ACM, 2021: 364-373. [15] WANG Y, ZHU D. SHGCN: A hypergraph-based deep learning model for spatiotemporal traffic flow prediction [C]// 5th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery. Seattle: ACM, 2022: 30-39. [16] LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4189-4196. [17] LAN S, MA Y, HUANG W, et al. DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting[C]// 39th International Conference on Machine Learning. San Diego: IMLS, 2022: 11906-11917. [18] WANG J C, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7891-7903. [19] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3558-3565. [20] JIANG J W, WEI Y X, FENG Y F, et al. Dynamic hypergraph neural networks [C]// Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: IJCAI, 2019: 2635-2641. [21] DING K Z, WANG J L, LI J D, et al. Be more with less: Hypergraph attention networks for inductive text classification [C]// 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 4927-4936. [22] YADATI N, NIMISHAKAVI M, YADAV P, et al. HyperGCN: A new method of training graph convolutional networks on hypergraphs [DB/OL]. (2018-09-07).https://arxiv.org/abs/1809.02589 [23] YIN N, FENG F L, LUO Z G, et al. Dynamic hypergraph convolutional network [C]//2022 IEEE 38th International Conference on Data Engineering. Kuala Lumpur: IEEE, 2022: 1621-1634. [24] Wang H, Peng J, Huang F, et al. MICN: Multi-scale local global context modeling for long-term series forecasting[C]// The Eleventh International Conference on Learning Representations. Kigali: ICLR, 2022. [25] Yin H, Zhang F, Li T R. Short-time traffic flow forecasting based on multi-adjacent graph and multi-head attention mechanism[J]. Computer Science, 2023, 50(4): 40-46 (in Chinese). |
| [1] | WU Yalei, LI Jinghua, KONG Dehui, LI Qianxing, YIN Baocai.3D Hand Pose Estimation Using Semantic Dynamic Hypergraph Convolutional Networks[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 855-865. |
| [2] | Ma Jin, Ren Ze, Zhang Tongtong, Ding Ying, Lu Yilei, Peng Yinghong.Transformer-Based Contrastive Learning Method for Automated Sleep Stages Classification[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 720-732. |
| [3] | Xiao Wenbo, Xiong Jiakai, Yu Lesheng, He Yinshui, Ma Guohong.Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 291-299. |
| [4] | KE Jing1(柯晶), ZHU Junchao2(朱俊超), YANG Xin1(杨鑫), ZHANG Haolin3(张浩林), SUN Yuxiang1(孙宇翔), WANG Jiayi1(王嘉怡), LU Yizhou4(鲁亦舟), SHEN Yiqing5(沈逸卿), LIU Sheng6(刘晟), JIANG Fusong7(蒋伏松), HUANG Qin8(黄琴).TshFNA-Examiner: A Nuclei Segmentation and Cancer Assessment Framework for Thyroid Cytology Image[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 945-957. |
| [5] | LI Mingai1, 2∗(李明爱), WEI Lina1(魏丽娜).Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
| [6] | GENG Zongsheng1(耿宗盛), ZHAO Dongdong1,2(赵东东), ZHOU Xingwen1(周兴文), YAN Lei1(闫磊), YAN Shi1,2∗(阎石).Leader-Following Consensus of Multi-Agent Systems via Fully Distributed Event-Based Control[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
| [7] | LIU Zengmin (刘增敏), WANG Shentao(王申涛), YAO Lixiu(姚莉秀), CAI Yunze(蔡云泽).Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 388-399. |
| [8] | ZHANG Yanjun(张彦军), WANG Biyun(王碧云),CAI Yunze (蔡云泽).Multi-Channel Based on Attention Network for Infrared Small Target Detection[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
| [9] | WANG Yujuan1 (王玉娟),LI Wengang2 (李文刚),LIU .Jianyong3 (刘建勇),CHEN Guangxue4 (陈广学),WANG Jun1*(汪军).Color Prediction Model of Gray Hybrid Multifilament Fabric[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
| [10] | LIU Zhuoran (刘卓然), ZHAO Xu∗ (赵旭).Multilevel Disparity Reconstruction Network for Real-Time Stereo Matching[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722. |
| [11] | SU Chong∗ (宿翀), LÜ Jing (吕晶), ZHANG Danyang (张丹阳), LI Hongguang∗ (李宏光).Affective Preferences Mining Approach with Applications in Process Control[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 737-746. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||