
J Shanghai Jiaotong Univ Sci››2025,Vol. 30››Issue (1): 121-129.doi:10.1007/s12204-023-2614-y
• Medicine-Engineering Interdisciplinary •Previous ArticlesNext Articles
ZHAO Yinjie1(赵寅杰), HOU Runpingg1(侯润萍), ZENG Wanqin2(曾琬琴), QIN Yulei1(秦玉磊), SHEN Tianle2(沈天乐), XU Zhiyong2(徐志勇), FU Xiaolong2*(傅小龙), SHEN Hongbin1*(沈红斌)
Received:2022-08-08Accepted:2022-11-28Online:2025-01-28Published:2025-01-28CLC Number:
ZHAO Yinjie1(赵寅杰), HOU Runpingg1(侯润萍), ZENG Wanqin2(曾琬琴), QIN Yulei1(秦玉磊), SHEN Tianle2(沈天乐), XU Zhiyong2(徐志勇), FU Xiaolong2*(傅小龙), SHEN Hongbin1*(沈红斌). Positional Information is a Strong Supervision for Volumetric Medical Image Segmentation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 121-129.
| [1] TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: A review [J]. Artificial Intelligence Review, 2021, 54(1): 137-178. [2] ZHANG S, XU J C, CHEN Y C, et al. Revisiting 3D context modeling with supervised pre-training for universal lesion detection in CT slices [M]//Medical image computing and computer assisted intervention—MICCAI 2020. Cham: Springer, 2020: 542-551. [3] JING L L, TIAN Y L. Self-supervised visual feature learning with deep neural networks: A survey [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058. [4] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]//37th International Conference on Machine Learning. Vienna: IMLS, 2020: 1597-1607. [5] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726-9735. [6] GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap ′your own latent: A new approach to self-supervised learning [C]//34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 21271-21284. [7] WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3733-3742. [8] CHAITANYA K, ERDIL E, KARANI N, et al. Contrastive learning of global and local features for medical image segmentation with limited annotations [C]//34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 12546-12558. [9] ZENG D W, WU Y W, HU X R, et al. Positional contrastive learning for volumetric medical image segmentation [M]//Medical image computing and computer assisted intervention— MICCAI 2021. Cham:Springer, 2021: 221-230. [10] RONNEBERGER O, FISCHER P, BROX T. UNet: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computer-assisted intervention— MICCAI 2015. Cham: Springer, 2015: 234-241. [11] MILLETARI F, NAVAB N, AHMADI S A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth International Conference on 3D Vision. Stanford: IEEE,2016: 565-571. [12] C? IC?EK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: Learning dense volumetric segmentation from sparse annotation [M]//Medical image computing and computer-assisted intervention— MICCAI 2016. Cham: Springer, 2016: 424-432. [13] LOU A, GUAN S, LOEW M. DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation [C]//Medical Imaging 2021: Image Processing. Online: SPIE, 2021, 11596: 758-768. [14] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: Redesigning skip connections to exploit multiscale features in image segmentation [J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. [15] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnUNet: A self-configuring method for deep learning-based biomedical image segmentation [J]. Nature Methods, 2021, 18(2): 203-211. [16] NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 69-84. [17] DOERSCH C, GUPTA A, EFROS A A. Unsupervised visual representation learning by context prediction [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1422-1430. [18] ZHANG R, ISOLA P, EFROS A A. Colorful image colorization [M]//Computer vision — ECCV 2016. Cham: Springer International Publishing, 2016: 649-666. [19] PATHAK D, KRAHENB ¨ UHL P, DONAHUE J, et ¨ al. Context encoders: Feature learning by inpainting [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2536-2544. [20] KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning [C]// 34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 18661-18673. [21] CHEN X L, HE K M. Exploring simple Siamese representation learning [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 15745-15753. [22] ZHOU Z W, SODHA V, RAHMAN SIDDIQUEE M M, et al. Models genesis: generic autodidactic models for 3D medical image analysis [M]//Medical image computing and computer assisted intervention— MICCAI 2019. Cham: Springer, 2019: 384-393. [23] ZHOU Z W, SODHA V, PANG J X, et al. Models genesis [J]. Medical Image Analysis, 2021, 67: 101840. [24] ZHUANG X R, LI Y X, HU Y F, et al. Self-supervised feature learning for 3D medical images by playing a rubik’s cube [M]//Medical image computing and computer assisted intervention— MICCAI 2019. Cham: Springer, 2019: 420-428. [25] ZHU J W, LI Y X, HU Y F, et al. Rubik’s Cube+: A self-supervised feature learning framework for 3D medical image analysis [J]. Medical Image Analysis, 2020, 64: 101746. [26] HAGHIGHI F, TAHER M R H, ZHOU Z W, et al. Transferable visual words: Exploiting the semantics of anatomical patterns for self-supervised learning [J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2857-2868. [27] YAN K, LU L, SUMMERS R M. Unsupervised body part regression via spatially self-ordering convolutional neural networks [C]//2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 1022-1025. |
| [1] | Fu Zeyu, Fu Zhuang, Guan Yisheng.Vascular Interventional Surgery Path Planning and 3D Visual Navigation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
| [2] | Feng Lingdong, Miao Yubin.Intelligent Heart Rate Extraction Method Based on Millimeter Wave Radar[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
| [3] | Duan Jizhong, Xu Yuhán, Huang Huan.Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
| [4] | Lu Pengli, Yang Peishi, Liao Yonggang.Deep Learning Framework for Predicting Essential Proteins with Temporal Convolutional Networks[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 510-520. |
| [5] | Si Bingqi, Pang Chenxi, Wang Zhiwu, Jiang Pingping, Yan Guozheng.Real-Time Lightweight Convolutional Neural Network for Polyp Detection in Endoscope Images[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
| [6] | Ma Ting, Wu Jianfang, Hu Feng, Nie Wei, Liu Youxin.Image Mosaic Method of Capsule Endoscopy Intestinal Wall Based on Improved Weighted Fusion[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
| [7] | Duan Jizhong, Su Yan.Improved Sensitivity Encoding Parallel Magnetic Resonance Imaging Reconstruction Algorithm Based on Efficient Sum of Outer Products Dictionary Learning[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
| [8] | Fan Xinggang, Liu Jiaxian, Li Chao, Yang Youdong, Gu Wenting, Jiang Xinyang.Computer Aided Diagnosis for COVID-19 in CT Images Utilizing Transfer Learning and Attention Mechanism[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
| [9] | Duolin, Xu Boyu, Ren Yong, Yang Xin.Magnetic Resonance Imaging Reconstruction Based on Butterfly Dilated Geometric Distillation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
| [10] | Li Qingwei, Fu Can, Xue Wenli, Wei Yongqiang, Shen Zhiwen.Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
| [11] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin.Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
| [12] | Wang Gang, Guan Yaonan, Li Dewei.Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
| [13] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming.Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
| [14] | DING Lihui1, 2(丁黎辉), FU Lijun1, 3(付立军), YANG Guang4(杨光), WAN Lin4, 5(万林), CHANG Zhijun7(常志军).Video-Based Detection of Epileptic Spasms in IESS: Modeling, Detection, and Evaluation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
| [15] | KONG Huiyang1(孔会扬), WANG Shuyi1(王殊轶), ZHANG Can2(张璨), CHEN Zan2, 3(陈赞).Augmented Reality Navigation Using Surgical Guides Versus Conventional Techniques in Pedicle Screw Placement[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||