
J Shanghai Jiaotong Univ Sci››2020,Vol. 25››Issue (5): 639-649.doi:10.1007/s12204-020-2224-x
Previous ArticlesNext Articles
XU Changbiao (徐昌彪), WU Xia (吴霞), HE Yinghui (何颖辉), MO Yunhui (莫运辉)
Online:2020-10-28Published:2020-09-11Contact:WU Xia (吴霞) E-mail:wuxiau@outlook.comCLC Number:
XU Changbiao, WU Xia, HE Yinghui, MO Yunhui . 5D Hyper-Chaotic System with Multiple Types of Equilibrium Points[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 639-649.
| [1] | LI C L, XIONG J B. A simple chaotic system with non-hyperbolic equilibria [J]. Optik, 2017, 128: 42-49. |
| [2] | SHIL’NIKOV A L, SHIL’NIKOV L P, TURAEV D V.Normal forms and Lorenz attractors [J]. International Journal of Bifurcation and Chaos, 1993, 3(5): 1123-1139. |
| [3] | LI C L, LI H M, LIW, et al. Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria [J]. AEUInternational Journal of Electronics and Communications,2018, 84: 199-205. |
| [4] | SPROTT J C. Simplest dissipative chaotic flow [J].Physics Letters A, 1997, 228(4/5): 271-274. |
| [5] | TLELO-CUAUTLE E, DE LA FRAGA L G, PHAMV T, et al. Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points [J]. Nonlinear Dynamics, 2017, 89(2):1129-1139. |
| [6] | TOLBAMF,ABDELATYAM, SOLIMANNS, et al.FPGA implementation of two fractional order chaotic systems [J]. AEU-International Journal of Electronics and Communications, 2017, 78: 162-172. |
| [7] | LI C L, ZHANG J. Synchronisation of a fractionalorder chaotic system using finite-time input-to-state stability [J]. International Journal of Systems Science,2016, 47(10): 2440-2448. |
| [8] | ZHANG L B, PENG F, LONG M. Identifying source camera using guided image estimation and block weighted average [J]. Journal of Visual Communication and Image Representation, 2017, 48: 471-479. |
| [9] | LI C Q. Cracking a hierarchical chaotic image encryption algorithm based on permutation [J]. Signal Processing,2016, 118: 203-210. |
| [10] | PENG F, ZHOU D L, LONG M, et al. Discrimination of natural images and computer generated graphics based on multi-fractal and regression analysis [J].AEU-International Journal of Electronics and Communications,2017, 71: 72-81. |
| [11] | LEONOV G A, KUZNETSOV N V, MOKAEV T N. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion [J]. The European Physical Journal Special Topics, 2015, 224(8): 1421-1458. |
| [12] | WEI Z, MOROZ I M, WANG Z, et al. Dynamics at infinity,degenerate Hopf and Zero-Hopf bifurcation for Kingni–Jafari system with hidden attractors [J]. International Journal of Bifurcation and Chaos, 2016,26(7): 1650125. |
| [13] | WEI Z C, MOROZ I, SPROTT J C, et al. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017,27(3): 033101. |
| [14] | DUDKOWSKI D, JAFARI S, KAPITANIAK T, et al. Hidden attractors in dynamical systems [J]. Physics Reports, 2016, 637: 1-50. |
| [15] | REN S, PANAHI S, RAJAGOPAL K, et al. A new chaotic flow with hidden attractor: The first hyperjerk system with no equilibrium [J]. Zeitschrift f¨ur Naturforschung A, 2018, 73(3): 239-249. |
| [16] | NAZARIMEHR F, JAFARI S, GOLPAYEGANI S M R H, et al. Categorizing chaotic flows from the viewpoint of fixed points and perpetual points [J]. International Journal of Bifurcation and Chaos, 2017, 27(2):1750023. |
| [17] | NAZARIMEHR F, SAEDI B, JAFARI S, et al. Are perpetual points sufficient for locating hidden attractors [J]. International Journal of Bifurcation and Chaos, 2017, 27(3): 1750037. |
| [18] | CHEN Y M, YANG Q G. A new Lorenz-type hyperchaotic system with a curve of equilibria [J]. Mathematics and Computers in Simulation, 2015, 112: 40-55. |
| [19] | OJONIYI O S, NJAH A N. A 5D hyperchaotic Sprott B system with coexisting hidden attractors [J]. Chaos,Solitons & Fractals, 2016, 87: 172-181. |
| [20] | KINGNI S T, JAFARI S, PHAM V T, et al. Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors [J]. Mathematics and Computers in Simulation, 2017, 132: 172-182. |
| [21] | PHAM V T, JAFARI S, VOLOS C, et al. A chaotic system with rounded square equilibrium and with noequilibrium [J]. Optik, 2017, 130: 365-371. |
| [22] | NAZARIMEHR F, RAJAGOPAL K, KENGNE J, et al. A new four-dimensional system containing chaotic or hyper-chaotic attractors with no equilibrium, a line of equilibria and unstable equilibria [J]. Chaos, Solitons & Fractals, 2018, 111: 108-118. |
| [23] | SINGH J P, RAJAGOPAL K, ROY B K. A new 5D hyperchaotic system with stable equilibrium point, transient chaotic behaviour and its fractional-order form[J]. Pramana, 2018, 91(3): 1-10. |
| [24] | SINGH J P, ROY B K. 5-D hyperchaotic and chaotic systems with non-hyperbolic equilibria and many equilibria [M]//Nonlinear dynamical systems with selfexcited and hidden attractors. Cham, Switzerland:Springer, 2018: 465-497. |
| [25] | PHAM V, JAFARI S, VOLOS C, et al. Different families of hidden attractors in a new chaotic system with variable equilibrium [J]. International Journal of Bifurcation and Chaos, 2017, 27(9): 1750138. |
| [26] | VOLOS C, MAAITA J O, VAIDYANATHAN S, et al. A novel four-dimensional hyperchaotic four-wing system with a saddle–focus equilibrium [J]. IEEE Transactions on Circuits and Systems II : Express Briefs,2017, 64(3): 339-343. |
| [27] | WEI Z C, RAJAGOPAL K, ZHANG W, et al. Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary differential equations with hidden hyperchaotic attractors [J]. Pramana,2018, 90(4): 1-13. |
| [28] | KENGNE J, NJIKAM S M, SIGNING V R F. A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity [J].Chaos, Solitons & Fractals, 2018, 106: 201-213. |
| [29] | HE S B, SUN K H, WANG H H. Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system [J]. Entropy, 2015, 17(12):8299-8311. |
| [30] | SUN K, HE S, ZHU C, et al. Analysis of chaotic complexity characteristics based on C0 algorithm [J]. Acta Electronica Sinica, 2013, 41(9): 1765-1771 (in Chinese). |
| [31] | RUKHIN A, SOTA J, NECHVATAL J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications [R]. Gaithersburg, USA: National Institute of Standards and Technology, 2000. |
| No related articles found! |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||