
Journal of Shanghai Jiao Tong University (Science)››2018,Vol. 23››Issue (5): 627-635.doi:10.1007/s12204-018-1992-z
Previous ArticlesNext Articles
TANG Songze (唐松泽), LI Heng (李恒), XIAO Liang (肖亮)
Online:2018-10-01Published:2018-10-07Contact:TANG Songze (唐松泽) E-mail:ts198708@163.comCLC Number:
TANG Songze (唐松泽), LI Heng (李恒), XIAO Liang (肖亮). Face Hallucination with Weighted Nuclear Norm Constraint[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 627-635.
| [1] | FREEMAN W T, PASZTOR E C, CARMICHAEL OT. Learning low-level vision [J]. International Journalof Computer Vision, 2000, 40(1): 25-47. |
| [2] | TANG S Z, XIAO L, LIU P F, et al. Coupled learningbased on singular-values-unique and hog for facehallucination [C]//Proceedings of IEEE InternationalConference on Acoustics, Speech and Signal Processing.Brisbane, Australia: IEEE, 2015: 1315-1319. |
| [3] | JIANG J J, HU R M, WANG Z Y, et al. Noise robustface hallucination via locality-constrained representation[J]. IEEE Transactions on Multimedia, 2014,16(5): 1268-1281. |
| [4] | BAKER S, KANADE T. Limits on super-resolutionand how to break them [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002, 24(9):1167-1183. |
| [5] | WANG X Y, TANG X O. Hallucinating face by eigentransformation [J]. IEEE Transactions on Systems,Man, and Cybernetics, Part C, 2005, 35(3): 425-434. |
| [6] | HU Y, LAM K M, SHEN T Z, et al. A novel kernelbasedframework for facial-image hallucination [J]. Imageand Vision Computing, 2011, 29: 219-229. |
| [7] | HUANG H, HE H T, FAN X, et al. Super-resolution ofhuman face image using canonical correlation analysis[J]. Pattern Recognition, 2010, 43: 2532-2543. |
| [8] | AN L, BHANU B. Face image super-resolution using2D CCA [J]. Signal Processing, 2014, 103: 184-194. |
| [9] | TANG S Z, XIAO L, LIU P F, et al. Partial leastsquaresregression on common feature space for singleimage superresolution [J]. Journal of Electronic Imaging,2014, 23(5): 053006. |
| [10] | ROWEIS S T, SAUL L K. Nonlinear dimensionality reductionby locally linear embedding [J]. Science, 2000,290(5500): 2323-2326. |
| [11] | CHANG H, YEUNG D Y, XIONG Y M. Superresolutionthrough neighbor embedding [C]//Proceedingsof 17th IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition. Washington,USA: IEEE, 2004: 1275-1282. |
| [12] | ZHU Q D, SUN L, CAI C T. Non-local neighbor embeddingfor image super-resolution through FoE features[J]. Neurocomputing, 2014, 141: 211-222. |
| [13] | CHEN X X, QI C. Low-rank neighbor embedding forsingle image super-resolution [J]. IEEE Signal ProcessingLetters, 2014, 21(1): 79-82. |
| [14] | JIANG J J, HU R M, WANG Z Y, et al. Facial imagehallucination through coupled-layer neighbor embedding[J]. IEEE Transactions on Circuits and Systemsfor Video Technology, 2015, 26(9): 1674-1684. |
| [15] | YANG J C, WRIGHT J, HUANG T S, et al. Imagesuper-resolution via sparse representation [J]. IEEETransactions on Image Processing, 2010, 19(11): 2861-2873. |
| [16] | MA X, ZHANG J P, QI C. Hallucinating face byposition-patch [J]. Pattern Recognition, 2010, 43:2224-2236. |
| [17] | JUNG C, JIAO L C, LIU B, et al. Position-patch basedface hallucination using convex optimization [J]. IEEESignal Processing Letters, 2011, 18(6): 367-370. |
| [18] | JIANG J J, CHEN C, MA J Y, et al. SRLSP: A faceimage super-resolution algorithm using smooth regressionwith local structure prior [J]. IEEE Transactionson Multimedia, 2016, 19(1): 27-40. |
| [19] | DONG C, LOY C C, HE K M, et al. Image superresolutionusing deep convolutional networks [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2016, 38(2): 295-307. |
| [20] | GAO G W, YANG J, LAI Z H, et al. Nuclear normregularized coding with local position-patch and nonlocalsimilarity for face hallucination [J]. Digital SignalProcessing, 2017, 64: 107-120. |
| [21] | CAI J F, CAND`ES E J, SHEN Z W. A singularvalue thresholding algorithm for matrix completion [J].SIAM Journal on Optimization, 2010, 20(4): 1956-1982. |
| [22] | GU S H, ZHANG L, ZUO W M, et al. Weightednuclear norm minimization with application to imagedenoising [C]//Proceedings of IEEE Conference onComputer Vision and Pattern Recognition. Columbus,USA: IEEE, 2014: 2862-2869. |
| [23] | YANG J, LUO L, QIAN J J, et al. Nuclear norm basedmatrix regression with applications to face recognitionwith occlusion and illumination changes [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2016, 39(1): 156-171. |
| [24] | LIN Z C, CHEN M M, MA Y. The augmentedLagrange multiplier method for exact recovery ofcorrupted low-rank matrices [EB/OL]. (2010-09-26)[2017-12-17]. https://arxiv.org/abs/1009.5055. |
| [25] | HANSSON A, LIU Z, VANDENBERGHE L. Subspacesystem identification via weighted nuclear norm optimization[C]//Proceedings of 51st IEEE Conference onDecision and Control. Hawaii, USA: IEEE, 2012: 3439-3444. |
| [26] | BECK A, TEBOULLE M. A fast iterative shrinkagethresholdingalgorithm for linear inverse problems [J].SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. |
| [27] | GU S H, XIE Q, MENG D Y, et al. Weighted nuclearnorm minimization and its applications to low levelvision [J]. International Journal of Computer Vision,2017, 121(2): 183-208. |
| [28] | THOMAZ C E, GIRALDI G A. A new ranking methodfor principal components analysis and its applicationto face image analysis [J]. Image and Vision Computing,2010, 28: 902-913. |
| [29] | WANG Z, BOVIK A C, SHEIKH H R, et al. Imagequality assessment: From error visibility to structuralsimilarity [J]. IEEE Transactions on Image Processing,2004, 13(4): 600-612. |
| [30] | QU SM, HU R M, CHEN S H, et al. Robust face superresolutionvia position-patch neighborhood preserving[C]//Proceedings of 15th IEEE International Conferenceon Multimedia and Expo Workshops (ICMEW).Chengdu, China: IEEE, 2014: 1-5. |
| [31] | XIE Y, QU Y Y, TAO D C, et al. Hyperspectral imagerestoration via iteratively regularized weighted Schattenp-norm minimization [J]. IEEE Transactions onGeoscience and Remote Sensing, 2016, 54(8): 4642-4659. |
| [1] | TANG Song-ze*(唐松泽), XIAO Liang (肖亮), LIU Peng-fei (刘鹏飞).Single Image Super-Resolution Method via Refined Local Learning[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(1): 26-31. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||