[1] PEI S Y, CHEN A, LEE J, et al. Hand interfaces: Using hands to imitate objects in AR/VR for expressive interactions [C]//Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. New Orleans: ACM, 2022: 1-16. [2] KHETA K, DELGOVE C, LIU R L, et al. Vision-based conflict detection within crowds based on high-resolution human pose estimation for smart and safe airport [DB/OL]. (2022-07-01).https://arxiv.org/abs/2207.00477 [3] ENDO M, POSTON K L, SULLIVAN E V, et al. GaitForeMer: self-supervised pre-training of transformers via human motion forecasting for few-shot gait impairment severity estimation[M]// Medical image computing and computer assisted intervention – MICCAI 2022. Cham: Springer, 2022: 130-139. [4] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1653-1660. [5] TOMPSON J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation [C]// 27th International Conference on Neural Information Processing Systems. Montreal: NIPS, 2014: 1799-1807. [6] WEI S H, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4724-4732. [7] NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[M]// Computer vision – ECCV 2016. Cham: Springer, 2016: 483-499. [8] XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 472-487. [9] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5686-5696. [10] WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. [11] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717. [12] CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7103-7112. [13] YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: A lightweight high-resolution network [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10435-10445. [14] CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1302-1310. [15] CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5385-5394. [16] MCNALLY W, VATS K, WONG A, et al. Rethinking keypoint representations: Modeling keypoints and poses as objects for multi-person human pose estimation[M]// Computer vision – ECCV 2022. Cham: Springer, 2022: 37-54. [17] LI Z, YE J W, SONG M L, et al. Online knowledge distillation for efficient pose estimation [C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 11720-11730. [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. [20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19. [21] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3141-3149. [22] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324. [23] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context [M]//Computer vision – ECCV 2014. Cham: Springer, 2014: 740-755. [24] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: New benchmark and state of the art analysis [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 3686-3693. [25] ZHANG Z, TANG J, WU G S. Simple and lightweight human pose estimation [DB/OL]. (2019-11-23).https://arxiv.org/abs/1911.10346 [26] LI Q, ZHANG Z Y, XIAO F, et al. Dite-HRNet: Dynamic lightweight high-resolution network for human pose estimation [DB/OL]. (2022-04-22).https://arxiv.org/abs/2204.10762 [27] MAJI D, NAGORI S, MATHEW M, et al. YOLO-pose: Enhancing YOLO for multi person pose estimation using object keypoint similarity loss [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 2636-2645. [28] PAPANDREOU G, ZHU T, CHEN L C, et al. PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 282-299. [29] KOCABAS M, KARAGOZ S, AKBAS E. MultiPoseNet: fast multi-person pose estimation using pose residual network[M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 437-453. [30] PAPANDREOU G, ZHU T, KANAZAWA N, et al. Towards accurate multi-person pose estimation in the wild [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3711-3719. [31] CARREIRA J, AGRAWAL P, FRAGKIADAKI K, et al. Human pose estimation with iterative error feedback [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4733-4742. [32] GKIOXARI G, TOSHEV A, JAITLY N. Chained predictions using convolutional neural networks[M]// Computer vision – ECCV 2016. Cham: Springer, 2016: 728-743. [33] WEI S H, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4724-4732. |