| [1] KANDEL S, STAMBAUGH, R F. Modeling expectedstock returns for long and short horizons [OL]. (2000-10-19) [2016-01-15]. http://ideas.repec.org/plfth/pennfi/42-88.html. [2] CAMPBELL J Y, LO A W C, MACKINLAY A C.The econometrics of financial markets [M]. New Jersey:Princeton University Press, 1997. [3] CAMPBELL J Y, YOGO M. Efficient tests of stockreturn predictability [J]. Journal of Financial Economics,2006, 81(1): 27-60. [4] ANG A, BEKAERT G. Stock return predictability: Isit there? [J]. Review of Financial Studies, 2007, 20(3):651-707. [5] GARDNER E S. Exponential smoothing: The state ofthe art—Part II [J]. International Journal of Forecasting,2006, 22(4): 637-666. [6] FRANSES P H, DIJK D, LUCAS A. Short patchesof outliers, ARCH and volatility modelling [J]. AppliedFinancial Economics, 2004, 14(4): 221-231. [7] BALABAN E, BAYAR A, FAFF R W. Forecastingstock market volatility: Further international evidence[J]. The European Journal of Finance, 2006, 12(2):171-188. [8] ATSALAKIS G S, VALAVANIS K P. Surveying stockmarket forecasting techniques—Part II: Soft computingmethods [J]. Expert Systems with Applications,2009, 36(3): 5932-5941. [9] HINTON G E. Learning multiple layers of representation[J]. Trends in Cognitive Sciences, 2007, 11(10):428-434. [10] BENGIO Y. Learning deep architectures for AI [J].Foundations and Trends? in Machine Learning, 2009,2(1): 1-127. [11] BABA N, SUTO H. Utilization of artificial neural networksand the TD-learning method for constructing intelligentdecision support systems [J]. European Journalof Operational Research, 2000, 122(2): 501-508. [12] BURKHOLDER T J, LIEBER R L. Stepwise regressionis an alternative to splines for fitting noisy data[J]. Journal of Biomechanics, 1996, 29(2): 235-238. [13] CHATFIELD C. What is the ‘best’method of forecasting?[J]. Journal of Applied Statistics, 1988, 15(1):19-38. [14] ZHANG G P. Time series forecasting using a hybridARIMA and neural network model [J]. Neurocomputing,2003, 50: 159-175. [15] HADAVANDI E, SHAVANDI H, GHANBARI A. Integrationof genetic fuzzy systems and artificial neuralnetworks for stock price forecasting [J]. Knowledge-Based Systems, 2010, 23(8): 800-808. [16] WANG J J, WANG J Z, ZHANG Z G, et al. Stockindex forecasting based on a hybrid model [J]. Omega,2012, 40(6): 758-766. [17] LEE T H, YANG W. Granger-causality in quantilesbetween financial markets: Using copula approach [J].International Review of Financial Analysis, 2014, 33:70-78. [18] LYNCH M. The Investment Clock. Special report,2004. [19] LO A W, MAMAYSKY H, WANG J. Foundations oftechnical analysis: Computational algorithms, statisticalinference, and empirical implementation [J]. TheJournal of Finance, 2000, 55(4): 1705-1770. [20] ZORIN A, BORISOV A. Modelling Riga Stock ExchangeIndex using neural networks [C]// Proceedingsof the International Conference Traditions and Innovationsin Sustainable Development of Society. Rezekne,Latvia: Information Technologies, 2002: 312-320. |