| 1. |
|
| 2. |
J.
Pei
,
L.
Deng
,
S.
Song
,
M.
Zhao
,
Y.
Zhang
et al., Towards artificial general intelligence with hybrid Tianjic chip architecture.
Nature
572, 106-111 (
2019).
https://doi.org/10.1038/s41586-019-1424-8
|
| 3. |
|
| 4. |
|
| 5. |
|
| 6. |
|
| 7. |
Z.
Wang
,
S.
Joshi
,
S.
Savel’ev
,
W.
Song
,
R.
Midya
et al., Fully memristive neural networks for pattern classification with unsupervised learning.
Nat. Electron.
1, 137-145 (
2018).
https://doi.org/10.1038/s41928-018-0023-2
|
| 8. |
|
| 9. |
K.
Hippalgaonkar
,
Q.
Li
,
X.
Wang
,
J.W.
Fisher III.
,
J.
Kirkpatrick
et al., Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics.
Nat. Rev. Mater.
8, 241-260 (
2023).
https://doi.org/10.1038/s41578-022-00513-1
|
| 10. |
|
| 11. |
J.-Q.
Yang
,
R.
Wang
,
Y.
Ren
,
J.-Y.
Mao
,
Z.-P.
Wang
et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems.
Adv. Mater.
32, e2003610 (
2020).
https://doi.org/10.1002/adma.202003610
|
| 12. |
C.
Eckel
,
J.
Lenz
,
A.
Melianas
,
A.
Salleo
,
R.T.
Weitz
, Nanoscopic electrolyte-gated vertical organic transistors with low operation voltage and five orders of magnitude switching range for neuromorphic systems.
Nano Lett.
22, 973-978 (
2022).
https://doi.org/10.1021/acs.nanolett.1c03832
|
| 13. |
B.J.
Shastri
,
A.N.
Tait
,
T. Ferreira de
Lima
,
W.H.P.
Pernice
,
H.
Bhaskaran
et al., Photonics for artificial intelligence and neuromorphic computing.
Nat. Photonics
15, 102-114 (
2021).
https://doi.org/10.1038/s41566-020-00754-y
|
| 14. |
|
| 15. |
|
| 16. |
S.
Najmaei
,
A.L.
Glasmann
,
M.A.
Schroeder
,
W.L.
Sarney
,
M.L.
Chin
et al., Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers.
Mater. Today
59, 80-106 (
2022).
https://doi.org/10.1016/j.mattod.2022.08.017
|
| 17. |
S.H.
Sung
,
T.J.
Kim
,
H.
Shin
,
T.H.
Im
,
K.J.
Lee
, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse.
Nat. Commun.
13, 2811 (
2022).
https://doi.org/10.1038/s41467-022-30432-2
|
| 18. |
L.
Wang
,
W.
Liao
,
S.L.
Wong
,
Z.G.
Yu
,
S.
Li
et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application.
Adv. Funct. Mater.
29, 1901106 (
2019).
https://doi.org/10.1002/adfm.201901106
|
| 19. |
M.
Seo
,
M.-H.
Kang
,
S.-B.
Jeon
,
H.
Bae
,
J.
Hur
et al., First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications.
IEEE Electron Device Lett.
39, 1445-1448 (
2018).
https://doi.org/10.1109/LED.2018.2852698
|
| 20. |
Y.-C.
Chiang
,
C.-C.
Hung
,
Y.-C.
Lin
,
Y.-C.
Chiu
,
T.
Isono
et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate.
Adv. Mater.
32, e2002638 (
2020).
https://doi.org/10.1002/adma.202002638
|
| 21. |
J.
Hochstetter
,
R.
Zhu
,
A.
Loeffler
,
A.
Diaz-Alvarez
,
T.
Nakayama
et al., Avalanches and edge-of-chaos learning in neuromorphic nanowire networks.
Nat. Commun.
12, 4008 (
2021).
https://doi.org/10.1038/s41467-021-24260-z
|
| 22. |
|
| 23. |
R.A.
Poldrack
,
J.
Clark
,
E.J.
Paré-Blagoev
,
D.
Shohamy
,
J. Creso
Moyano
et al., Interactive memory systems in the human brain.
Nature
414, 546-550 (
2001).
https://doi.org/10.1038/35107080
|
| 24. |
H.
Zhang
,
H.
Zeng
,
A.
Priimagi
,
O.
Ikkala
, Viewpoint: Pavlovian materials—functional biomimetics inspired by classical conditioning.
Adv. Mater.
32, 1906619 (
2020).
https://doi.org/10.1002/adma.201906619
|
| 25. |
|
| 26. |
J.H.
Baek
,
K.J.
Kwak
,
S.J.
Kim
,
J.
Kim
,
J.Y.
Kim
et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks.
Nano-Micro Lett.
15, 69 (
2023).
https://doi.org/10.1007/s40820-023-01035-3
|
| 27. |
K.
He
,
Y.
Liu
,
J.
Yu
,
X.
Guo
,
M.
Wang
et al., Artificial neural pathway based on a memristor synapse for optically mediated motion learning.
ACS Nano
16, 9691-9700 (
2022).
https://doi.org/10.1021/acsnano.2c03100
|
| 28. |
J.
Sun
,
G.
Han
,
Z.
Zeng
,
Y.
Wang
, Memristor-based neural network circuit of full-function Pavlov associative memory with time delay and variable learning rate.
IEEE Trans. Cybern.
50, 2935-2945 (
2020).
https://doi.org/10.1109/TCYB.2019.2951520
|
| 29. |
|
| 30. |
Q.
Liu
,
S.
Gao
,
L.
Xu
,
W.
Yue
,
C.
Zhang
et al., Nanostructured perovskites for nonvolatile memory devices.
Chem. Soc. Rev.
51, 3341-3379 (
2022).
https://doi.org/10.1039/d1cs00886b
|
| 31. |
|
| 32. |
S.H.
Jo
,
T.
Chang
,
I.
Ebong
,
B.B.
Bhadviya
,
P.
Mazumder
et al., Nanoscale memristor device as synapse in neuromorphic systems.
Nano Lett.
10, 1297-1301 (
2010).
https://doi.org/10.1021/nl904092h
|
| 33. |
M.
Chen
,
M.
Sun
,
H.
Bao
,
Y.
Hu
,
B.
Bao
, Flux-charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability.
IEEE Trans. Ind. Electron.
67, 2197-2206 (
2020).
https://doi.org/10.1109/TIE.2019.2907444
|
| 34. |
C.
Wu
,
T.W.
Kim
,
T.
Guo
,
F.
Li
,
D.U.
Lee
et al., Mimicking classical conditioning based on a single flexible memristor.
Adv. Mater.
29, 1602890 (
2017).
https://doi.org/10.1002/adma.201602890
|
| 35. |
|
| 36. |
|
| 37. |
W.
Wang
,
S.
Gao
,
Y.
Li
,
W.
Yue
,
H.
Kan
et al., Artificial optoelectronic synapses based on TiN
xO
2-
x/MoS
2heterojunction for neuromorphic computing and visual system.
Adv. Funct. Mater.
31, 2170247 (
2021).
https://doi.org/10.1002/adfm.202170247
|
| 38. |
|
| 39. |
W.
Wang
,
S.
Gao
,
Y.
Wang
,
Y.
Li
,
W.
Yue
et al., Advances in emerging photonic memristive and memristive-like devices.
Adv. Sci.
9, e2105577 (
2022).
https://doi.org/10.1002/advs.202105577
|
| 40. |
|
| 41. |
K.
Liu
,
T.
Zhang
,
B.
Dang
,
L.
Bao
,
L.
Xu
et al., An optoelectronic synapse based on α-In
2Se
3with controllable temporal dynamics for multimode and multiscale reservoir computing.
Nat. Electron.
5, 761-773 (
2022).
https://doi.org/10.1038/s41928-022-00847-2
|
| 42. |
|
| 43. |
D.
Kumar
,
A.
Saleem
,
L.B.
Keong
,
Y.H.
Wang
,
T.-Y.
Tseng
, Light induced RESET phenomenon in invisible memristor for photo sensing.
IEEE Electron Device Lett.
43, 1069-1072 (
2022).
https://doi.org/10.1109/LED.2022.3172866
|
| 44. |
Y.
Pei
,
L.
Yan
,
Z.
Wu
,
J.
Lu
,
J.
Zhao
et al., Artificial visual perception nervous system based on low-dimensional material photoelectric memristors.
ACS Nano
15, 17319-17326 (
2021).
https://doi.org/10.1021/acsnano.1c04676
|
| 45. |
W.
Wang
,
Y.
Li
,
W.
Yue
,
S.
Gao
,
C.
Zhang
et al., Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM.
IEEE Trans. Electron Devices
67, 4884-4890 (
2020).
https://doi.org/10.1109/TED.2020.3022005
|
| 46. |
T.J.
Jacobsson
,
S.
Viarbitskaya
,
E.
Mukhtar
,
T.
Edvinsson
, A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots.
Phys. Chem. Chem. Phys.
16, 13849-13857 (
2014).
https://doi.org/10.1039/c4cp00254g
|
| 47. |
B.
Liu
,
E.S.
Aydil
, Growth of oriented single-crystalline rutile TiO
2nanorods on transparent conducting substrates for dye-sensitized solar cells.
J. Am. Chem. Soc.
131, 3985-3990 (
2009).
https://doi.org/10.1021/ja8078972
|
| 48. |
|
| 49. |
|
| 50. |
S.
Liu
,
M.-Y.
Li
,
D.
Su
,
M.
Yu
,
H.
Kan
et al., Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors.
ACS Appl. Mater. Interfaces
10, 32516-32525 (
2018).
https://doi.org/10.1021/acsami.8b09442
|
| 51. |
|
| 52. |
M.
Xiao
,
K.P.
Musselman
,
W.W.
Duley
,
N.Y.
Zhou
, Resistive switching memory of TiO
2nanowire networks grown on Ti foil by a single hydrothermal method.
Nano-Micro Lett.
9, 15 (
2016).
https://doi.org/10.1007/s40820-016-0116-2
|
| 53. |
W.
Liu
,
Y.
Yun
,
M.
Li
,
J.
Mao
,
C.
Li
et al., Preparation of hollow ceramic photocatalytic membrane grafted with silicon-doped TiO
2nanorods and conversion of high-concentration NO.
Chem. Eng. J.
437, 135261 (
2022).
https://doi.org/10.1016/j.cej.2022.135261
|
| 54. |
M.S.
Irshad
,
A.
Abbas
,
H.H.
Qazi
,
M.H.
Aziz
,
M.
Shah
et al., Role of point defects in hybrid phase TiO
2for resistive random-access memory (RRAM).
Mater. Res. Express
6, 076311 (
2019).
https://doi.org/10.1088/2053-1591/ab17b5
|
| 55. |
P.
Russo
,
M.
Xiao
,
R.
Liang
,
N.Y.
Zhou
, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices.
Adv. Funct. Mater.
28, 1706230 (
2018).
https://doi.org/10.1002/adfm.201706230
|
| 56. |
W.
Wang
,
R.
Wang
,
T.
Shi
,
J.
Wei
,
R.
Cao
et al., A self-rectification and quasi-linear analogue memristor for artificial neural networks.
IEEE Electron Device Lett.
40, 1407-1410 (
2019).
https://doi.org/10.1109/LED.2019.2929240
|
| 57. |
J.-T.
Yang
,
C.
Ge
,
J.-Y.
Du
,
H.-Y.
Huang
,
M.
He
et al., Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor.
Adv. Mater.(
2018).
https://doi.org/10.1002/adma.201801548
|
| 58. |
S.J.
Kim
,
T.H.
Lee
,
J.-M.
Yang
,
J.W.
Yang
,
Y.J.
Lee
et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses.
Mater. Today
52, 19-30 (
2022).
https://doi.org/10.1016/j.mattod.2021.10.035
|
| 59. |
Y.
Lin
,
J.
Liu
,
J.
Shi
,
T.
Zeng
,
X.
Shan
et al., Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning.
Appl. Phys. Lett.
118, 103502 (
2021).
https://doi.org/10.1063/5.0036667
|
| 60. |
K.C.
Kwon
,
J.H.
Baek
,
K.
Hong
,
S.Y.
Kim
,
H.W.
Jang
, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing.
Nano-Micro Lett.
14, 58 (
2022).
https://doi.org/10.1007/s40820-021-00784-3
|
| 61. |
T.
Chang
,
S.-H.
Jo
,
W.
Lu
, Short-term memory to long-term memory transition in a nanoscale memristor.
ACS Nano
5, 7669-7676 (
2011).
https://doi.org/10.1021/nn202983n
|
| 62. |
P.
Zhang
,
M.
Xia
,
F.
Zhuge
,
Y.
Zhou
,
Z.
Wang
et al., Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses.
Nano Lett.
19, 4279-4286 (
2019).
https://doi.org/10.1021/acs.nanolett.9b00525
|
| 63. |
Q.
Liu
,
S.
Gao
,
Y.
Li
,
W.
Yue
,
C.
Zhang
et al., HfO
2/WO
3heterojunction structured memristor for high-density storage and neuromorphic computing.
Adv. Mater. Technol.
8, 2201143 (
2023).
https://doi.org/10.1002/admt.202201143
|