| 1. |
|
| 2. |
|
| 3. |
B
.
Huang
,
Z
.
Sun
,
G
.
Sun
, Recent progress in cathodic reduction-enabled organic electrosynthesis: trends, challenges, and opportunities.
eScience
2, 243-277 (
2022).
https://doi.org/10.1016/j.esci.2022.04.006
|
| 4. |
|
| 5. |
L
.
An
,
C
.
Wei
,
M
.
Lu
,
H
.
Liu
,
Y
.
Chen
et al., Recent development of oxygen evolution electrocatalysts in acidic environment.
Adv. Mater.
33, e2006328 (
2021).
https://doi.org/10.1002/adma.202006328
|
| 6. |
J
.
Mahmood
,
F
.
Li
,
S.-M
.
Jung
,
M.S
.
Okyay
,
I
.
Ahmad
et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction.
Nat. Nanotechnol.
12, 441-446 (
2017).
https://doi.org/10.1038/nnano.2016.304
|
| 7. |
Z.W
.
Seh
,
J
.
Kibsgaard
,
C.F
.
Dickens
,
I
.
Chorkendorff
,
J.K
.
Nørskov
et al., Combining theory and experiment in electrocatalysis: insights into materials design.
Science
355, eaad4998 (
2017).
https://doi.org/10.1126/science.aad4998
|
| 8. |
C
.
Li
,
N. Clament Sagaya
Selvam
,
J
.
Fang
, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells.
Nano-Micro Lett.
15, 83 (
2023).
https://doi.org/10.1007/s40820-023-01060-2
|
| 9. |
L
.
Ding
,
Z
.
Xie
,
S
.
Yu
,
W
.
Wang
,
A.Y
.
Terekhov
et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution.
Nano-Micro Lett.
15, 144 (
2023).
https://doi.org/10.1007/s40820-023-01117-2
|
| 10. |
J.N
.
Tiwari
,
S
.
Sultan
,
C.W
.
Myung
,
T
.
Yoon
,
N
.
Li
et al., Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity.
Nat. Energy
3, 773-782 (
2018).
https://doi.org/10.1038/s41560-018-0209-x
|
| 11. |
H
.
Zhang
,
P
.
An
,
W
.
Zhou
,
B.Y
.
Guan
,
P
.
Zhang
et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction.
Sci. Adv.
4, eaao6657 (
2018).
https://doi.org/10.1126/sciadv.aao6657
|
| 12. |
H
.
Wei
,
K
.
Huang
,
D
.
Wang
,
R
.
Zhang
,
B
.
Ge
et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth.
Nat. Commun.
8, 1490 (
2017).
https://doi.org/10.1038/s41467-017-01521-4
|
| 13. |
X
.
Li
,
J
.
Yu
,
J
.
Jia
,
A
.
Wang
,
L
.
Zhao
et al., Confined distribution of platinum clusters on MoO
2hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction.
Nano Energy
62, 127-135 (
2019).
https://doi.org/10.1016/j.nanoen.2019.05.013
|
| 14. |
N
.
Cheng
,
S
.
Stambula
,
D
.
Wang
,
M.N
.
Banis
,
J
.
Liu
et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction.
Nat. Commun.
7, 13638 (
2016).
https://doi.org/10.1038/ncomms13638
|
| 15. |
D
.
Liu
,
X
.
Li
,
S
.
Chen
,
H
.
Yan
,
C
.
Wang
et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution.
Nat. Energy
4, 512-518 (
2019).
https://doi.org/10.1038/s41560-019-0402-6
|
| 16. |
J
.
Dendooven
,
R.K
.
Ramachandran
,
E
.
Solano
,
M
.
Kurttepeli
,
L
.
Geerts
et al., Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition.
Nat. Commun.
8, 1074 (
2017).
https://doi.org/10.1038/s41467-017-01140-z
|
| 17. |
I.J
.
Hsu
,
Y.C
.
Kimmel
,
X
.
Jiang
,
B.G
.
Willis
,
J.G
.
Chen
, Atomic layer deposition synthesis of platinum-tungsten carbide core-shell catalysts for the hydrogen evolution reaction.
Chem. Commun.
48, 1063-1065 (
2012).
https://doi.org/10.1039/C1CC15812K
|
| 18. |
Y
.
Da
,
Z
.
Tian
,
R
.
Jiang
,
G
.
Chen
,
Y
.
Liu
et al., Single-atom Pt doping induced
p-type to
n-type transition in NiO nanosheets toward self-gating modulated electrocatalytic hydrogen evolution reaction.
ACS Nano
17, 18539-18547 (
2023).
https://doi.org/10.1021/acsnano.3c06595
|
| 19. |
Z
.
Chen
,
X
.
Li
,
J
.
Zhao
,
S
.
Zhang
,
J
.
Wang
et al., Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution.
Angew. Chem. Int. Ed.
62, e202308686 (
2023).
https://doi.org/10.1002/anie.202308686
|
| 20. |
Y
.
Da
,
Z
.
Tian
,
R
.
Jiang
,
Y
.
Liu
,
X
.
Lian
et al., Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N
4C
2configurations for synergistic electrocatalytic hydrogen evolution reaction.
Sci. China Mater.
66, 1389-1397 (
2023).
https://doi.org/10.1007/s40843-022-2249-9
|
| 21. |
L
.
Chen
,
Y
.
Huang
,
Y
.
Ding
,
P
.
Yu
,
F
.
Huang
et al., Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis.
Nano Res.
16, 12186-12195 (
2023).
https://doi.org/10.1007/s12274-023-5666-2
|
| 22. |
Z
.
Zeng
,
S
.
Küspert
,
S.E
.
Balaghi
,
H.E.M
.
Hussein
,
N
.
Ortlieb
et al., Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction.
Small
19, e2205885 (
2023).
https://doi.org/10.1002/smll.202205885
|
| 23. |
Y
.
Qu
,
B
.
Chen
,
Z
.
Li
,
X
.
Duan
,
L
.
Wang
et al., Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal.
J. Am. Chem. Soc.
141, 4505-4509 (
2019).
https://doi.org/10.1021/jacs.8b09834
|
| 24. |
T
.
Wang
,
M
.
Park
,
Q
.
He
,
Z
.
Ding
,
Q
.
Yu
et al., Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation.
Cell. Rep. Phys. Sci.
1(11), 100235 (
2020).
https://doi.org/10.1016/j.xcrp.2020.100235
|
| 25. |
T
.
Wang
,
Z
.
Zhang
,
M
.
Park
,
Q
.
Yu
,
Y
.
Yang
, Etching-free ultrafast fabrication of self-rolled metallic nanosheets with controllable twisting.
Nano Lett.
21, 7159-7165 (
2021).
https://doi.org/10.1021/acs.nanolett.1c01789
|
| 26. |
|
| 27. |
H
.
Wu
,
C
.
Feng
,
L
.
Zhang
,
J
.
Zhang
,
D.P
.
Wilkinson
, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis.
Electrochem. Energy Rev.
4, 473-507 (
2021).
https://doi.org/10.1007/s41918-020-00086-z
|
| 28. |
J.C
.
Meier
,
C
.
Galeano
,
I
.
Katsounaros
,
J
.
Witte
,
H.J
.
Bongard
et al., Design criteria for stable Pt/C fuel cell catalysts.
Beilstein J. Nanotechnol.
5, 44-67 (
2014).
https://doi.org/10.3762/bjnano.5.5
|
| 29. |
|
| 30. |
M
.
Park
,
D
.
Li
,
T
.
Wang
,
B
.
Zhou
,
Y.Y
.
Li
et al., Elasto-capillary manipulation of freestanding inorganic nanosheets: an implication for nano-manufacturing of low-dimensional structures.
Adv. Mater. Interfaces
9, 2200355
2022).
https://doi.org/10.1002/admi.202200355
|
| 31. |
|
| 32. |
|
| 33. |
S.I
.
Zabinsky
,
J.J
.
Rehr
,
A
.
Ankudinov
,
R.C
.
Albers
,
M.J
.
Eller
, Multiple-scattering calculations of X-ray-absorption spectra.
Phys. Rev. B
52, 2995-3009 (
1995).
https://doi.org/10.1103/physrevb.52.2995
|
| 34. |
J
.
Kibsgaard
,
T.F
.
Jaramillo
,
F
.
Besenbacher
, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo
3S
13]
2- clusters.
Nat. Chem.
6, 248-253 (
2014).
https://doi.org/10.1038/nchem.1853
|
| 35. |
Z
.
Jia
,
T
.
Yang
,
L
.
Sun
,
Y
.
Zhao
,
W
.
Li
et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution.
Adv. Mater.
32, e2000385 (
2020).
https://doi.org/10.1002/adma.202000385
|
| 36. |
X
.
Zhang
,
Y
.
Yang
,
Y
.
Liu
,
Z
.
Jia
,
Q
.
Wang
et al., Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities.
Adv. Mater.
35, e2303439 (
2023).
https://doi.org/10.1002/adma.202303439
|
| 37. |
C
.
Lee
,
X
.
Wei
,
J.W
.
Kysar
,
J
.
Hone
, Measurement of the elastic properties and intrinsic strength of monolayer graphene.
Science
321, 385-388 (
2008).
https://doi.org/10.1126/science.1157996
|
| 38. |
C
.
Cao
,
S
.
Mukherjee
,
J
.
Liu
,
B
.
Wang
,
M
.
Amirmaleki
et al., Role of graphene in enhancing the mechanical properties of TiO
2/graphene heterostructures.
Nanoscale
9, 11678-11684 (
2017).
https://doi.org/10.1039/C7NR03049E
|
| 39. |
G
.
Kresse
,
J
.
Furthmüller
, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.
Comput. Mater. Sci.
6, 15-50 (
1996).
https://doi.org/10.1016/0927-0256(96)00008-0
|
| 40. |
R
.
Michalsky
,
Y.-J
.
Zhang
,
A.A
.
Peterson
, Trends in the hydrogen evolution activity of metal carbide catalysts.
ACS Catal.
4, 1274-1278 (
2014).
https://doi.org/10.1021/cs500056u
|
| 41. |
B
.
You
,
M.T
.
Tang
,
C
.
Tsai
,
F
.
Abild-Pedersen
,
X
.
Zheng
et al., Enhancing electrocatalytic water splitting by strain engineering.
Adv. Mater.
31, e1807001 (
2019).
https://doi.org/10.1002/adma.201807001
|
| 42. |
J.K
.
Nørskov
,
T
.
Bligaard
,
A
.
Logadottir
,
J.R
.
Kitchin
,
J.G
.
Chen
et al., Trends in the exchange current for hydrogen evolution.
J. Electrochem. Soc.
152, J23 (
2005).
https://doi.org/10.1149/1.1856988
|
| 43. |
H
.
Wang
,
Q
.
He
,
X
.
Gao
,
Y
.
Shang
,
W
.
Zhu
et al., Multifunctional high entropy alloys enabled by severe lattice distortion.
Adv. Mater. (
2023).
https://doi.org/10.1002/adma.202305453
|
| 44. |
|
| 45. |
J
.
Li
,
Y
.
Chen
,
Q
.
He
,
X
.
Xu
,
H
.
Wang
et al., Heterogeneous lattice strain strengthening in severely distorted crystalline solids.
Proc. Natl. Acad. Sci.
119, 1-7 (
2022).
https://doi.org/10.1073/pnas.2200607119
|
| 46. |
|
| 47. |
C.G
.
Morales-Guio
,
L.A
.
Stern
,
X
.
Hu
, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution.
Chem. Soc. Rev.
43, 6555-6569 (
2014).
https://doi.org/10.1039/c3cs60468c
|
| 48. |
|
| 49. |
C
.
Wan
,
Z
.
Zhang
,
J
.
Dong
,
M
.
Xu
,
H
.
Pu
et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction.
Nat. Mater.
22, 1022-1029 (
2023).
https://doi.org/10.1038/s41563-023-01584-3
|
| 50. |
|
| 51. |
|
| 52. |
K
.
Yan
,
T.A
.
Maark
,
A
.
Khorshidi
,
V.A
.
Sethuraman
,
A.A
.
Peterson
et al. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction.
Angew. Chem. Intern. Ed.
55, 6175-6181 (
2016).
https://doi.org/10.1002/anie.201508613
|
| 53. |
H
.
Li
,
C
.
Tsai
,
A.L
.
Koh
,
L
.
Cai
,
A.W
.
Contryman
et al., Activating and optimizing MoS
2basal planes for hydrogen evolution through the formation of strained sulphur vacancies.
Nat. Mater.
15, 364-364 (
2016).
https://doi.org/10.1038/nmat4564
|
| 54. |
M
.
Erbi
,
H
.
Amara
,
R
.
Gatti
, Tuning elastic properties of metallic nanoparticles by shape controlling: from atomistic to continuous models.
ArXiv Preprint ArXiv: 2303.06995(
2023).
|
| 55. |
|
| 56. |
|
| 57. |
D
.
Deng
,
K.S
.
Novoselov
,
Q
.
Fu
,
N
.
Zheng
,
Z
.
Tian
et al., Catalysis with two-dimensional materials and their heterostructures.
Nat. Nanotechn.
11, 218-230 (
2016).
https://doi.org/10.1038/nnano.2015.340
|
| 58. |
J.-J
.
Wang
,
X.-P
.
Li
,
B.-F
.
Cui
,
Z
.
Zhang
,
X.-F
.
Hu
et al., A review of non-noble metal-based electrocatalysts for CO
2electroreduction.
Rare Met.
40, 3019-3037 (
2021).
https://doi.org/10.1007/s12598-021-01736-x
|
| 59. |
|
| 60. |
|
| 61. |
S
.
Hu
,
S
.
Ge
,
H
.
Liu
,
X
.
Kang
,
Q
.
Yu
et al., Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability.
Adv. Funct. Mater.
32, 2201726 (
2022).
https://doi.org/10.1002/adfm.202201726
|
| 62. |
|