| 1. |
K.S
.
Novoselov
,
A.K
.
Geim
,
S.V
.
Morozov
,
D
.
Jiang
,
Y
.
Zhang
et al., Electric field effect in atomically thin carbon films.
Science
306, 666-669 (
2004).
https://doi.org/10.1126/science.1102896
|
| 2. |
Y
.
Gao
,
J
.
Chen
,
G
.
Chen
,
C
.
Fan
,
X
.
Liu
, Recent progress in the transfer of graphene films and nanostructures.
Small Methods
5, e2100771 (
2021).
https://doi.org/10.1002/smtd.202100771
|
| 3. |
|
| 4. |
|
| 5. |
W
.
Qian
,
S
.
Xu
,
X
.
Zhang
,
C
.
Li
,
W
.
Yang
et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges.
Nano-Micro Lett.
13, 156 (
2021).
https://doi.org/10.1007/s40820-021-00681-9
|
| 6. |
Z
.
Lyu
,
S
.
Ding
,
D
.
Du
,
K
.
Qiu
,
J
.
Liu
et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties.
Adv. Drug Deliv. Rev.
185, 114269 (
2022).
https://doi.org/10.1016/j.addr.2022.114269
|
| 7. |
|
| 8. |
Y
.
Zhang
,
J
.
Mei
,
C
.
Yan
,
T
.
Liao
,
J
.
Bell
et al., Bioinspired 2D nanomaterials for sustainable applications.
Adv. Mater.
32, e1902806 (
2020).
https://doi.org/10.1002/adma.201902806
|
| 9. |
M
.
Wang
,
J
.
Zhu
,
Y
.
Zi
,
Z.-G
.
Wu
,
H
.
Hu
et al., Functional two-dimensional black phosphorus nanostructures towards next-generation devices.
J. Mater. Chem. A
9, 12433-12473 (
2021).
https://doi.org/10.1039/D1TA02027G
|
| 10. |
Z
.
Wei
,
B
.
Li
,
C
.
Xia
,
Y
.
Cui
,
J
.
He
et al., Various structures of 2D transition-metal dichalcogenides and their applications.
Small Method
2, 1800094
2018).
https://doi.org/10.1002/smtd.201800094
|
| 11. |
S
.
Roy
,
X
.
Zhang
,
A.B
.
Puthirath
,
A
.
Meiyazhagan
,
S
.
Bhattacharyya
et al., Structure, properties and applications of two-dimensional hexagonal boron nitride.
Adv. Mater.
33, e2101589 (
2021).
https://doi.org/10.1002/adma.202101589
|
| 12. |
H.Y
.
Hoh
,
Y
.
Zhang
,
Y.L
.
Zhong
,
Q
.
Bao
, Harnessing the potential of graphitic carbon nitride for optoelectronic applications.
Adv. Opt. Mater.
9, 2100146 (
2021).
https://doi.org/10.1002/adom.202100146
|
| 13. |
W
.
Yu
,
K
.
Gong
,
Y
.
Li
,
B
.
Ding
,
L
.
Li
et al., Flexible 2D materials beyond graphene: synthesis, properties, and applications.
Small
18, e2105383 (
2022).
https://doi.org/10.1002/smll.202105383
|
| 14. |
|
| 15. |
R
.
Rajendran
,
L.K
.
Shrestha
,
K
.
Minami
,
M
.
Subramanian
,
R
.
Jayavel
et al., Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO
2ternary nanocomposites with electrochemical performance.
J. Mater. Chem. A
2, 18480-18487 (
2014).
https://doi.org/10.1039/C4TA03996C
|
| 16. |
J
.
Mei
,
Y
.
Zhang
,
T
.
Liao
,
Z
.
Sun
,
S.X
.
Dou
, Strategies for improving the lithium-storage performance of 2D nanomaterials.
Natl. Sci. Rev.
5, 389-416 (
2018).
https://doi.org/10.1093/nsr/nwx077
|
| 17. |
C
.
Murugan
,
V
.
Sharma
,
R.K
.
Murugan
,
G
.
Malaimegu
,
A
.
Sundaramurthy
, Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy.
J. Control. Release
299, 1-20 (
2019).
https://doi.org/10.1016/j.jconrel.2019.02.015
|
| 18. |
W
.
Wen
,
Y
.
Song
,
X
.
Yan
,
C
.
Zhu
,
D
.
Du
et al., Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications.
Mater. Today
21, 164-177 (
2018).
https://doi.org/10.1016/j.mattod.2017.09.001
|
| 19. |
|
| 20. |
Y.-C
.
Lin
,
R
.
Torsi
,
D.B
.
Geohegan
,
J.A
.
Robinson
,
K
.
Xiao
, Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers.
Adv. Sci.
8, 2004249 (
2021).
https://doi.org/10.1002/advs.202004249
|
| 21. |
R
.
Wang
,
Y
.
Yu
,
S
.
Zhou
,
H
.
Li
,
H
.
Wong
et al., Strategies on phase control in transition metal dichalcogenides.
Adv. Funct. Mater.
28, 1802473 (
2018).
https://doi.org/10.1002/adfm.201802473
|
| 22. |
G
.
Guan
,
S
.
Zhang
,
S
.
Liu
,
Y
.
Cai
,
M
.
Low
et al., Protein induces layer-by-layer exfoliation of transition metal dichalcogenides.
J. Am. Chem. Soc.
137, 6152-6155 (
2015).
https://doi.org/10.1021/jacs.5b02780
|
| 23. |
G
.
Guan
,
J
.
Xia
,
S
.
Liu
,
Y
.
Cheng
,
S
.
Bai
et al., Electrostatic-driven exfoliation and hybridization of 2D nanomaterials.
Adv. Mater.
29, 1700326 (
2017).
https://doi.org/10.1002/adma.201700326
|
| 24. |
S
.
Li
,
Y
.
Ma
,
N.A.N
.
Ouedraogo
,
F
.
Liu
,
C
.
You
et al., P-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices.
Nano Res.
15, 123-144 (
2022).
https://doi.org/10.1007/s12274-021-3500-2
|
| 25. |
|
| 26. |
Q
.
Lu
,
Y
.
Yu
,
Q
.
Ma
,
B
.
Chen
,
H
.
Zhang
, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions.
Adv. Mater.
28, 1917-1933 (
2016).
https://doi.org/10.1002/adma.201503270
|
| 27. |
X
.
Huang
,
C
.
Tan
,
Z
.
Yin
,
H
.
Zhang
, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Adv. Mater.
26, 2185-2204 (
2014).
https://doi.org/10.1002/adma.201304964
|
| 28. |
Y
.
Zhao
,
K
.
Xu
,
F
.
Pan
,
C
.
Zhou
,
F
.
Zhou
et al., Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors.
Adv. Funct. Mater.
27, 1603484 (
2017).
https://doi.org/10.1002/adfm.201603484
|
| 29. |
Q
.
Wang
,
Y
.
Lei
,
Y
.
Wang
,
Y
.
Liu
,
C
.
Song
et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis.
Energy Environ. Sci.
13, 1593-1616 (
2020).
https://doi.org/10.1039/D0EE00450B
|
| 30. |
S
.
Chen
,
D
.
Huang
,
M
.
Cheng
,
L
.
Lei
,
Y
.
Chen
et al., Surface and interface engineering of two-dimensional bismuth-based photocatalysts for ambient molecule activation.
J. Mater. Chem. A
9, 196-233 (
2021).
https://doi.org/10.1039/D0TA08165E
|
| 31. |
X
.
Gan
,
D
.
Lei
,
R
.
Ye
,
H
.
Zhao
,
K.-Y
.
Wong
, Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: dimensionality and interface engineering.
Nano Res.
14, 2003-2022 (
2021).
https://doi.org/10.1007/s12274-020-2955-x
|
| 32. |
W
.
Choi
,
N
.
Choudhary
,
G.H
.
Han
,
J
.
Park
,
D
.
Akinwande
et al., Recent development of two-dimensional transition metal dichalcogenides and their applications.
Mater. Today
20, 116-130 (
2017).
https://doi.org/10.1016/j.mattod.2016.10.002
|
| 33. |
|
| 34. |
X
.
Xi
,
Z
.
Wang
,
W
.
Zhao
,
J.-H
.
Park
,
K.T
.
Law
et al., Ising pairing in superconducting NbSe
2atomiclayers.
Nat. Phys.
12, 139-143 (
2016).
https://doi.org/10.1038/nphys3538
|
| 35. |
Y
.
Qi
,
P.G
.
Naumov
,
M.N
.
Ali
,
C.R
.
Rajamathi
,
W
.
Schnelle
et al., Superconductivity in weyl semimetal candidate MoTe
2.
Nat. Commun.
7, 11038 (
2016).
https://doi.org/10.1038/ncomms11038
|
| 36. |
E
.
Navarro-Moratalla
,
J.O. Island, S
.
Mañas-Valero
,
E
.
Pinilla-Cienfuegos
,
A
.
Castellanos-Gomez
et al., Enhanced superconductivity in atomically thin TaS
2.
Nat. Commun.
7, 11043 (
2016).
https://doi.org/10.1038/ncomms11043
|
| 37. |
|
| 38. |
Q.H
.
Wang
,
K
.
Kalantar-Zadeh
,
A
.
Kis
,
J.N
.
Coleman
,
M.S
.
Strano
, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Nat. Nanotechnol.
7, 699-712 (
2012).
https://doi.org/10.1038/nnano.2012.193
|
| 39. |
|
| 40. |
X
.
Yuan
,
M
.
Yang
,
L
.
Wang
,
Y
.
Li
, Structural stability and intriguing electronic properties of two-dimensional transition metal dichalcogenide alloys.
Phys. Chem. Chem. Phys.
19, 13846-13854 (
2017).
https://doi.org/10.1039/C7CP01727H
|
| 41. |
C
.
Gao
,
X
.
Yang
,
M
.
Jiang
,
L
.
Chen
,
Z
.
Chen
et al., Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys.
Phys. Chem. Chem. Phys.
24, 4653-4665 (
2022).
https://doi.org/10.1039/d1cp05847a
|
| 42. |
Z
.
Shi
,
Q
.
Zhang
,
U
.
Schwingenschlögl
, Alloying as a route to monolayer transition metal dichalcogenides with improved optoelectronic performance: Mo(S
1-
xSe
x)
2and Mo
1-
yW
yS
2.
ACS Appl. Energy Mater.
1, 2208-2214 (
2018).
https://doi.org/10.1021/acsaem.8b00288
|
| 43. |
M
.
Chen
,
L
.
Zhu
,
Q
.
Chen
,
N
.
Miao
,
C
.
Si
et al., Quantifying the composition dependency of the ground-state structure, electronic property and phase-transition dynamics in ternary transition-metal-dichalcogenide monolayers.
J. Mater. Chem. C
8, 721-733 (
2020).
https://doi.org/10.1039/C9TC05487A
|
| 44. |
H
.
Li
,
X
.
Duan
,
X
.
Wu
,
X
.
Zhuang
,
H
.
Zhou
et al., Growth of alloy MoS
2
xSe
2(1-
x
)nanosheets with fully tunable chemical compositions and optical properties.
J. Am. Chem. Soc.
136, 3756-3759 (
2014).
https://doi.org/10.1021/ja500069b
|
| 45. |
Q
.
Deng
,
X
.
Li
,
H
.
Si
,
J
.
Hong
,
S
.
Wang
et al., Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T’ phase-tunable Mo
xRe
1-
xS
2alloys.
Adv. Funct. Mater.
30, 2003264 (
2020).
https://doi.org/10.1002/adfm.202003264
|
| 46. |
X
.
Duan
,
C
.
Wang
,
Z
.
Fan
,
G
.
Hao
,
L
.
Kou
et al., Synthesis of WS
2
xSe
2-
2xalloy nanosheets with composition-tunable electronic properties.
Nano Lett.
16, 264-269 (
2016).
https://doi.org/10.1021/acs.nanolett.5b03662
|
| 47. |
V
.
Kochat
,
A
.
Apte
,
J.A
.
Hachtel
,
H
.
Kumazoe
,
A
.
Krishnamoorthy
et al., Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism.
Adv. Mater.
29, 1703754 (
2017).
https://doi.org/10.1002/adma.201703754
|
| 48. |
P
.
Yu
,
J
.
Lin
,
L
.
Sun
,
Q.L
.
Le
,
X
.
Yu
et al., Metal-semiconductor phase-transition in WSe
2(1-
x
)Te
2
xmonolayer.
Adv. Mater.
29, 1603991 (
2017).
https://doi.org/10.1002/adma.201603991
|
| 49. |
Y
.
Deng
,
P
.
Li
,
C
.
Zhu
,
J
.
Zhou
,
X
.
Wang
et al., Controlled synthesis of Mo
xW
1-
xTe
2atomic layers with emergent quantum states.
ACS Nano
15, 11526-11534 (
2021).
https://doi.org/10.1021/acsnano.1c01441
|
| 50. |
A.-Y
.
Lu
,
H
.
Zhu
,
J
.
Xiao
,
C.-P
.
Chuu
,
Y
.
Han
et al., Janus monolayers of transition metal dichalcogenides.
Nat. Nanotechnol.
12, 744-749 (
2017).
https://doi.org/10.1038/nnano.2017.100
|
| 51. |
|
| 52. |
H
.
Mo
,
X
.
Zhang
,
Y
.
Liu
,
P
.
Kang
,
H
.
Nan
et al., Two-dimensional alloying molybdenum tin disulfide monolayers with fast photoresponse.
ACS Appl. Mater. Interfaces
11, 39077-39087 (
2019).
https://doi.org/10.1021/acsami.9b13645
|
| 53. |
C
.
Tan
,
Z
.
Luo
,
A
.
Chaturvedi
,
Y
.
Cai
,
Y
.
Du
et al., Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution.
Adv. Mater.
30, 1705509 (
2018).
https://doi.org/10.1002/adma.201705509
|
| 54. |
I.S
.
Kwon
,
I.H
.
Kwak
,
T.T
.
Debela
,
J.Y
.
Kim
,
S.J
.
Yoo
et al., Phase-transition Mo
1-
xV
xSe
2alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction.
ACS Nano
15, 14672-14682 (
2021).
https://doi.org/10.1021/acsnano.1c04453
|
| 55. |
I.H
.
Kwak
,
I.S
.
Kwon
,
T.T
.
Debela
,
H.G
.
Abbas
,
Y.C
.
Park
et al., Phase evolution of Re
1-
xMo
xSe
2alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction.
ACS Nano
14, 11995-12005 (
2020).
https://doi.org/10.1021/acsnano.0c05159
|
| 56. |
X
.
Liu
,
J
.
Wu
,
W
.
Yu
,
L
.
Chen
,
Z
.
Huang
et al., Monolayer W
xMo
1-
xS
2grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors.
Adv. Funct. Mater.
27, 1606469 (
2017).
https://doi.org/10.1002/adfm.201606469
|
| 57. |
G
.
Shao
,
X.-X
.
Xue
,
B
.
Wu
,
Y.-C
.
Lin
,
M
.
Ouzounian
et al., Template-assisted synthesis of metallic 1T’-Sn
0.3W
0.7S
2nanosheets for hydrogen evolution reaction.
Adv. Funct. Mater.
30, 1906069 (
2020).
https://doi.org/10.1002/adfm.201906069
|
| 58. |
X
.
Li
,
M.-W
.
Lin
,
L
.
Basile
,
S.M
.
Hus
,
A.A
.
Puretzky
et al., Isoelectronic tungsten doping in monolayer MoSe
2for carrier type modulation.
Adv. Mater.
28, 8240-8247 (
2016).
https://doi.org/10.1002/adma.201601991
|
| 59. |
Q
.
Fu
,
L
.
Yang
,
W
.
Wang
,
A
.
Han
,
J
.
Huang
et al., Synthesis and enhanced electrochemical catalytic performance of monolayer WS
2(1-
x
)Se
2
xwith a tunable band gap.
Adv. Mater.
27, 4732-4738 (
2015).
https://doi.org/10.1002/adma.201500368
|
| 60. |
W.-J
.
Yin
,
H.-J
.
Tan
,
P.-J
.
Ding
,
B
.
Wen
,
X.-B
.
Li
et al., Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives.
Mater. Adv.
2, 7543-7558 (
2021).
https://doi.org/10.1039/D1MA00660F
|
| 61. |
|
| 62. |
X
.
Zhou
,
L
.
Gan
,
W
.
Tian
,
Q
.
Zhang
,
S
.
Jin
et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors.
Adv. Mater.
27, 8035-8041 (
2015).
https://doi.org/10.1002/adma.201503873
|
| 63. |
Y
.
Huang
,
H.-X
.
Deng
,
K
.
Xu
,
Z.-X
.
Wang
,
Q.-S
.
Wang
et al., Highly sensitive and fast phototransistor based on large size CVD-grown SnS
2nanosheets.
Nanoscale
7, 14093-14099 (
2015).
https://doi.org/10.1039/C5NR04174K
|
| 64. |
P
.
Perumal
,
R.K
.
Ulaganathan
,
R
.
Sankar
,
Y.-M
.
Liao
,
T.-M
.
Sun
et al., Ultra-thin layered ternary single crystals [Sn(S
xSe
1-
x)
2] with bandgap engineering for high performance phototransistors on versatile substrates.
Adv. Funct. Mater.
26, 3630-3638 (
2016).
https://doi.org/10.1002/adfm.201600081
|
| 65. |
A
.
Kutana
,
E.S
.
Penev
,
B.I
.
Yakobson
, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying.
Nanoscale
6, 5820-5825 (
2014).
https://doi.org/10.1039/C4NR00177J
|
| 66. |
J
.
Kang
,
S
.
Tongay
,
J
.
Li
,
J
.
Wu
, Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing.
J. Appl. Phys.
113, 143703 (
2013).
https://doi.org/10.1063/1.4799126
|
| 67. |
H.-P
.
Komsa
,
A.V
.
Krasheninnikov
, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties.
J. Phys. Chem. Lett.
3, 3652-3656 (
2012).
https://doi.org/10.1021/jz301673x
|
| 68. |
Z
.
Hemmat
,
J
.
Cavin
,
A
.
Ahmadiparidari
,
A
.
Ruckel
,
S
.
Rastegar
et al., Quasi-binary transition metal dichalcogenide alloys: thermodynamic stability prediction, scalable synthesis, and application.
Adv. Mater.
32, e1907041 (
2020).
https://doi.org/10.1002/adma.201907041
|
| 69. |
J.-H
.
Yang
,
B.I
.
Yakobson
, Unusual negative formation enthalpies and atomic ordering in isovalent alloys of transition metal dichalcogenide monolayers.
Chem. Mater.
30, 1547-1555 (
2018).
https://doi.org/10.1021/acs.chemmater.7b04527
|
| 70. |
M.C
.
Troparevsky
,
J.R
.
Morris
,
M
.
Daene
,
Y
.
Wang
,
A.R
.
Lupini
et al., Beyond atomic sizes and hume-rothery rules: understanding and predicting high-entropy alloys.
JOM
67, 2350-2363 (
2015).
https://doi.org/10.1007/s11837-015-1594-2
|
| 71. |
H
.
Taghinejad
,
D.A
.
Rehn
,
C
.
Muccianti
,
A.A
.
Eftekhar
,
M
.
Tian
et al., Defect-mediated alloying of monolayer transition-metal dichalcogenides.
ACS Nano
12, 12795-12804 (
2018).
https://doi.org/10.1021/acsnano.8b07920
|
| 72. |
W
.
Yao
,
Z
.
Kang
,
J
.
Deng
,
Y
.
Chen
,
Q
.
Song
et al., Synthesis of 2D MoS
2(1-
x
)Se
2
xsemiconductor alloy by chemical vapor deposition.
RSC Adv.
10, 42172-42177 (
2020).
https://doi.org/10.1039/d0ra07776c
|
| 73. |
Y
.
Tsai
,
Z
.
Chu
,
Y
.
Han
,
C.-P
.
Chuu
,
D
.
Wu
et al., Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement.
Adv. Mater.
29, 1703680 (
2017).
https://doi.org/10.1002/adma.201703680
|
| 74. |
B
.
Tang
,
J
.
Zhou
,
P
.
Sun
,
X
.
Wang
,
L
.
Bai
et al., Phase-controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms.
Adv. Mater.
31, e1900862 (
2019).
https://doi.org/10.1002/adma.201900862
|
| 75. |
J
.
Cavin
,
A
.
Ahmadiparidari
,
L
.
Majidi
,
A.S
.
Thind
,
S.N
.
Misal
et al., 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis.
Adv. Mater.
33, e2100347 (
2021).
https://doi.org/10.1002/adma.202100347
|
| 76. |
Y
.
Chen
,
Z
.
Tian
,
X
.
Wang
,
N
.
Ran
,
C
.
Wang
et al., 2D transition metal dichalcogenide with increased entropy for piezoelectric electronics.
Adv. Mater.
34, e2201630 (
2022).
https://doi.org/10.1002/adma.202201630
|
| 77. |
J
.
Lin
,
J
.
Zhou
,
S
.
Zuluaga
,
P
.
Yu
,
M
.
Gu
et al., Anisotropic ordering in 1T’ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium.
ACS Nano
12, 894-901 (
2018).
https://doi.org/10.1021/acsnano.7b08782
|
| 78. |
D.O
.
Dumcenco
,
H
.
Kobayashi
,
Z
.
Liu
,
Y.-S
.
Huang
,
K
.
Suenaga
, Visualization and quantification of transition metal atomic mixing in Mo
1-
xW
xS
2single layers.
Nat. Commun.
4, 1351 (
2013).
https://doi.org/10.1038/ncomms2351
|
| 79. |
S
.
Susarla
,
P
.
Manimunda
,
Y.M
.
Jaques
,
J.A
.
Hachtel
,
J.C
.
Idrobo
et al., Strain-induced structural deformation study of 2D Mo
xW
(1-
x
)S
2.
Adv. Mater. Interfaces
6, 1801262
2019).
https://doi.org/10.1002/admi.201801262
|
| 80. |
C
.
Tan
,
W
.
Zhao
,
A
.
Chaturvedi
,
Z
.
Fei
,
Z
.
Zeng
et al., Preparation of single-layer MoS
2
xSe
2(1-
x
)and Mo
xW
1-
xS
2nanosheets with high-concentration metallic 1T phase.
Small
12, 1866-1874 (
2016).
https://doi.org/10.1002/smll.201600014
|
| 81. |
D
.
Hu
,
G
.
Xu
,
L
.
Xing
,
X
.
Yan
,
J
.
Wang
et al., Two-dimensional semiconductors grown by chemical vapor transport.
Angew. Chem. Int. Ed.
56, 3611-3615 (
2017).
https://doi.org/10.1002/anie.201700439
|
| 82. |
|
| 83. |
Q
.
Gong
,
L
.
Cheng
,
C
.
Liu
,
M
.
Zhang
,
Q
.
Feng
et al., Ultrathin MoS
2(1-
x
)Se
2
xalloy nanoflakes for electrocatalytic hydrogen evolution reaction.
ACS Catal.
5, 2213-2219 (
2015).
https://doi.org/10.1021/cs501970w
|
| 84. |
Q
.
Feng
,
Y
.
Zhu
,
J
.
Hong
,
M
.
Zhang
,
W
.
Duan
et al., Growth of large-area 2D MoS
2(1-
x
)Se
2
xsemiconductor alloys.
Adv. Mater.
26, 2648-2653 (
2014).
https://doi.org/10.1002/adma.201306095
|
| 85. |
Z
.
Zheng
,
J
.
Yao
,
G
.
Yang
, Centimeter-scale deposition of Mo
0.5W
0.5Se
2alloy film for high-performance photodetectors on versatile substrates.
ACS Appl. Mater. Interfaces
9, 14920-14928 (
2017).
https://doi.org/10.1021/acsami.7b02166
|
| 86. |
L
.
Zhang
,
T
.
Yang
,
X
.
He
,
W
.
Zhang
,
G
.
Vinai
et al., Molecular beam epitaxy of two-dimensional vanadium-molybdenum diselenide alloys.
ACS Nano
14, 11140-11149 (
2020).
https://doi.org/10.1021/acsnano.0c02124
|
| 87. |
X
.
Hu
,
Z
.
Hemmat
,
L
.
Majidi
,
J
.
Cavin
,
R
.
Mishra
et al., Controlling nanoscale thermal expansion of monolayer transition metal dichalcogenides by alloy engineering.
Small
16, e1905892 (
2020).
https://doi.org/10.1002/smll.201905892
|
| 88. |
G.K
.
Solanki
,
D.N
.
Gujarathi
,
M.P
.
Deshpande
,
D
.
Lakshminarayana
,
M.K
.
Agarwal
, Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique.
Cryst. Res. Technol.
43, 179-185 (
2008).
https://doi.org/10.1002/crat.200711060
|
| 89. |
S.D
.
Karande
,
N
.
Kaushik
,
D.S
.
Narang
,
D
.
Late
,
S
.
Lodha
, Thickness tunable transport in alloyed WSSe field effect transistors.
Appl. Phys. Lett.
109, 142101 (
2016).
https://doi.org/10.1063/1.4964289
|
| 90. |
|
| 91. |
S
.
Witomska
,
T
.
Leydecker
,
A
.
Ciesielski
,
P
.
Samorì
, Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics.
Adv. Funct. Mater.
29, 1901126 (
2019).
https://doi.org/10.1002/adfm.201901126
|
| 92. |
Z
.
Yang
,
H
.
Liang
,
X
.
Wang
,
X
.
Ma
,
T
.
Zhang
et al., Atom-thin SnS
2-
xSe
xwith adjustable compositions by direct liquid exfoliation from single crystals.
ACS Nano
10, 755-762 (
2016).
https://doi.org/10.1021/acsnano.5b05823
|
| 93. |
I.S
.
Kwon
,
I.H
.
Kwak
,
J.Y
.
Kim
,
T.T
.
Debela
,
Y.C
.
Park
et al., Concurrent vacancy and adatom defects of Mo
1-
xNb
xSe
2alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction.
ACS Nano
15, 5467-5477 (
2021).
https://doi.org/10.1021/acsnano.1c00171
|
| 94. |
I.H
.
Kwak
,
T.T
.
Debela
,
I.S
.
Kwon
,
J
.
Seo
,
S.J
.
Yoo
et al., Anisotropic alloying of Re
1-
xMo
xS
2nanosheets to boost the electrochemical hydrogen evolution reaction.
J. Mater. Chem. A
8, 25131-25141 (
2020).
https://doi.org/10.1039/D0TA09299A
|
| 95. |
W
.
Zhang
,
X
.
Li
,
T
.
Jiang
,
J
.
Song
,
Y
.
Lin
et al., CVD synthesis of Mo
(1-
x
)W
xS
2and MoS
2(1-
x
)Se
2
xalloy monolayers aimed at tuning the bandgap of molybdenum disulfide.
Nanoscale
7, 13554-13560 (
2015).
https://doi.org/10.1039/c5nr02515j
|
| 96. |
Z
.
Cai
,
B
.
Liu
,
X
.
Zou
,
H.-M
.
Cheng
, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures.
Chem. Rev.
118, 6091-6133 (
2018).
https://doi.org/10.1021/acs.chemrev.7b00536
|
| 97. |
L
.
Tang
,
J
.
Tan
,
H
.
Nong
,
B
.
Liu
,
H.-M
.
Cheng
, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism.
Acc. Mater. Res.
2, 36-47 (
2021).
https://doi.org/10.1021/accountsmr.0c00063
|
| 98. |
L
.
Fang
,
S
.
Tao
,
Z
.
Tian
,
K
.
Liu
,
X
.
Li
et al., Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration.
Nano Res.
14, 2867-2874 (
2021).
https://doi.org/10.1007/s12274-021-3347-6
|
| 99. |
F
.
Chen
,
L
.
Wang
,
X
.
Ji
,
Q
.
Zhang
, Temperature-dependent two-dimensional transition metal dichalcogenide heterostructures: controlled synthesis and their properties.
ACS Appl. Mater. Interfaces
9, 30821-30831 (
2017).
https://doi.org/10.1021/acsami.7b08313
|
| 100. |
S
.
Susarla
,
V
.
Kochat
,
A
.
Kutana
,
J.A
.
Hachtel
,
J.C
.
Idrobo
et al., Phase segregation behavior of two-dimensional transition metal dichalcogenide binary alloys induced by dissimilar substitution.
Chem. Mater.
29, 7431-7439 (
2017).
https://doi.org/10.1021/acs.chemmater.7b02407
|
| 101. |
D.B
.
Trivedi
,
G
.
Turgut
,
Y
.
Qin
,
M.Y
.
Sayyad
,
D
.
Hajra
et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures.
Adv. Mater.
32, e2006320 (
2020).
https://doi.org/10.1002/adma.202006320
|
| 102. |
|
| 103. |
G
.
Xue
,
X
.
Sui
,
P
.
Yin
,
Z
.
Zhou
,
X
.
Li
et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply.
Sci. Bull.
68, 1514-1521 (
2023).
https://doi.org/10.1016/j.scib.2023.06.037
|
| 104. |
Y
.
Zuo
,
C
.
Liu
,
L
.
Ding
,
R
.
Qiao
,
J
.
Tian
et al., Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply.
Nat. Commun.
13, 1007 (
2022).
https://doi.org/10.1038/s41467-022-28628-7
|
| 105. |
|
| 106. |
J
.
Lee
,
S
.
Pak
,
Y.W
.
Lee
,
Y
.
Park
,
A.R
.
Jang
et al., Direct epitaxial synthesis of selective two-dimensional lateral heterostructures.
ACS Nano
13, 13047-13055 (
2019).
https://doi.org/10.1021/acsnano.9b05722
|
| 107. |
X
.
Zhang
,
S
.
Xiao
,
L
.
Shi
,
H
.
Nan
,
X
.
Wan
et al., Large-size Mo
1-
xW
xS
2and W
1-
xMo
xS
2(x = 0-0.5) monolayers by confined-space chemical vapor deposition.
Appl. Surf. Sci.
457, 591-597 (
2018).
https://doi.org/10.1016/j.apsusc.2018.06.299
|
| 108. |
K
.
Ding
,
Q
.
Fu
,
H
.
Nan
,
X
.
Gu
,
K
.
Ostrikov
et al., Controllable synthesis of WS
2(1-
x
)Se
2
xmonolayers with fast photoresponse by a facile chemical vapor deposition strategy.
Mater. Sci. Eng. B
269, 115176
2021).
https://doi.org/10.1016/j.mseb.2021.115176
|
| 109. |
P
.
Kang
,
H
.
Nan
,
X
.
Zhang
,
H
.
Mo
,
Z
.
Ni
et al., Controllable synthesis of crystalline ReS
2(1-
x
)Se
2
xmonolayers on amorphous SiO
2/Si substrates with fast photoresponse.
Adv. Opt. Mater.
8, 1901415 (
2020).
https://doi.org/10.1002/adom.201901415
|
| 110. |
Q
.
Feng
,
N
.
Mao
,
J
.
Wu
,
H
.
Xu
,
C
.
Wang
et al., Growth of MoS
2(1-
x
)Se
2
x(x = 0.41-1.00) monolayer alloys with controlled morphology by physical vapor deposition.
ACS Nano
9, 7450-7455 (
2015).
https://doi.org/10.1021/acsnano.5b02506
|
| 111. |
|
| 112. |
S
.
Prucnal
,
A
.
Hashemi
,
M
.
Ghorbani-Asl
,
R
.
Hübner
,
J
.
Duan
et al., Chlorine doping of MoSe
2flakes by ion implantation.
Nanoscale
13, 5834-5846 (
2021).
https://doi.org/10.1039/D0NR08935D
|
| 113. |
Q
.
Ma
,
M
.
Isarraraz
,
C.S
.
Wang
,
E
.
Preciado
,
V
.
Klee
et al., Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange.
ACS Nano
8, 4672-4677 (
2014).
https://doi.org/10.1021/nn5004327
|
| 114. |
M
.
Ghorbani-Asl
,
S
.
Kretschmer
,
D.E
.
Spearot
,
A.V
.
Krasheninnikov
, Two-dimensional MoS
2under ion irradiation: from controlled defect production to electronic structure engineering.
2D Mater.
4, 025078 (
2017).
https://doi.org/10.1088/2053-1583/aa6b17
|
| 115. |
|
| 116. |
J
.
Yao
,
Z
.
Zheng
,
G
.
Yang
, Promoting the performance of layered-material photodetectors by alloy engineering.
ACS Appl. Mater. Interfaces
8, 12915-12924 (
2016).
https://doi.org/10.1021/acsami.6b03691
|
| 117. |
J.G
.
Song
,
G.H
.
Ryu
,
S.J
.
Lee
,
S
.
Sim
,
C.W
.
Lee
et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer.
Nat. Commun.
6, 7817 (
2015).
https://doi.org/10.1038/ncomms8817
|
| 118. |
H.H
.
Huang
,
X
.
Fan
,
D.J
.
Singh
,
W.T
.
Zheng
, Recent progress of TMD nanomaterials: phase transitions and applications.
Nanoscale
12, 1247-1268 (
2020).
https://doi.org/10.1039/c9nr08313h
|
| 119. |
|
| 120. |
S.-Z
.
Yang
,
Y
.
Gong
,
P
.
Manchanda
,
Y.-Y
.
Zhang
,
G
.
Ye
et al., Rhenium-doped and stabilized MoS
2atomic layers with basal-plane catalytic activity.
Adv. Mater.
30, e1803477 (
2018).
https://doi.org/10.1002/adma.201803477
|
| 121. |
I.S
.
Kwon
,
I.H
.
Kwak
,
G.M
.
Zewdie
,
S.J
.
Lee
,
J.Y
.
Kim
et al., WSe
2-VSe
2alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction.
ACS Nano
16, 12569-12579 (
2022).
https://doi.org/10.1021/acsnano.2c04113
|
| 122. |
K
.
Yang
,
X
.
Wang
,
H
.
Li
,
B
.
Chen
,
X
.
Zhang
et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides.
Nanoscale
9, 5102-5109 (
2017).
https://doi.org/10.1039/c7nr01015j
|
| 123. |
Z
.
Wang
,
Y
.
Shen
,
Y
.
Ito
,
Y
.
Zhang
,
J
.
Du
et al., Synthesizing 1T-1H two-phase Mo
1-
xW
xS
2monolayers by chemical vapor deposition.
ACS Nano
12, 1571-1579 (
2018).
https://doi.org/10.1021/acsnano.7b08149
|
| 124. |
Z
.
Wang
,
X
.
Zhao
,
Y
.
Yang
,
L
.
Qiao
,
L
.
Lv
et al., Phase-controlled synthesis of monolayer W
1-
xRe
xS
2alloy with improved photoresponse performance.
Small
16, e2000852 (
2020).
https://doi.org/10.1002/smll.202000852
|
| 125. |
Y.-C
.
Lin
,
D.O
.
Dumcenco
,
Y.-S
.
Huang
,
K
.
Suenaga
, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS
2.
Nat. Nanotechnol.
9, 391-396 (
2014).
https://doi.org/10.1038/nnano.2014.64
|
| 126. |
I.H
.
Kwak
,
I.S
.
Kwon
,
G.M
.
Zewdie
,
T.T
.
Debela
,
S.J
.
Lee
et al., Polytypic phase transition of Nb
1-
xV
xSe
2via colloidal synthesis and their catalytic activity toward hydrogen evolution reaction.
ACS Nano
16, 4278-4288 (
2022).
https://doi.org/10.1021/acsnano.1c10301
|
| 127. |
K.Y
.
Ko
,
S
.
Lee
,
K
.
Park
,
Y
.
Kim
,
W.J
.
Woo
et al., High-performance gas sensor using a large-area WS
2
xSe
2-2
xalloy for low-power operation wearable applications.
ACS Appl. Mater. Interfaces
10, 34163-34171 (
2018).
https://doi.org/10.1021/acsami.8b10455
|
| 128. |
Y
.
Chen
,
J
.
Xi
,
D.O
.
Dumcenco
,
Z
.
Liu
,
K
.
Suenaga
et al., Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys.
ACS Nano
7, 4610-4616 (
2013).
https://doi.org/10.1021/nn401420h
|
| 129. |
M
.
Zhang
,
J
.
Wu
,
Y
.
Zhu
,
D.O
.
Dumcenco
,
J
.
Hong
et al., Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport.
ACS Nano
8, 7130-7137 (
2014).
https://doi.org/10.1021/nn5020566
|
| 130. |
F
.
Cui
,
Q
.
Feng
,
J
.
Hong
,
R
.
Wang
,
Y
.
Bai
et al., Synthesis of large-size 1T’ ReS
2
xSe
2(1-
x
)alloy monolayer with tunable bandgap and carrier type.
Adv. Mater.
29, 1705015 (
2017).
https://doi.org/10.1002/adma.201705015
|
| 131. |
J
.
Kim
,
H
.
Seung
,
D
.
Kang
,
J
.
Kim
,
H
.
Bae
et al., Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics.
Nano Lett.
21, 9153-9163 (
2021).
https://doi.org/10.1021/acs.nanolett.1c02991
|
| 132. |
Y.-R
.
Lin
,
W.-H
.
Cheng
,
M.H
.
Richter
,
J.S
.
DuChene
,
E.A
.
Peterson
et al., Band edge tailoring in few-layer two-dimensional molybdenum sulfide/selenide alloys.
J. Phys. Chem. C
124, 22893-22902 (
2020).
https://doi.org/10.1021/acs.jpcc.0c04719
|
| 133. |
|
| 134. |
L
.
Yang
,
Q
.
Fu
,
W
.
Wang
,
J
.
Huang
,
J
.
Huang
et al., Large-area synthesis of monolayered MoS
2(1-
x
)Se
2
xwith a tunable band gap and its enhanced electrochemical catalytic activity.
Nanoscale
7, 10490-10497 (
2015).
https://doi.org/10.1039/c5nr02652k
|
| 135. |
|
| 136. |
H
.
Masenda
,
L.M
.
Schneider
,
M. Adel
Aly
,
S.J
.
Machchhar
,
A
.
Usman
et al., Energy scaling of compositional disorder in ternary transition-metal dichalcogenide monolayers.
Adv. Electron. Mater.
7, 2100196 (
2021).
https://doi.org/10.1002/aelm.202100196
|
| 137. |
B
.
Aslan
,
I.M
.
Datye
,
M.J
.
Mleczko
,
K. Sze
Cheung
,
S
.
Krylyuk
et al., Probing the optical properties and strain-tuning of ultrathin Mo
1-
xW
xTe
2.
Nano Lett.
18, 2485-2491 (
2018).
https://doi.org/10.1021/acs.nanolett.8b00049
|
| 138. |
W
.
Zheng
,
B
.
Zheng
,
C
.
Yan
,
Y
.
Liu
,
X
.
Sun
et al., Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors.
Adv. Sci.
6, 1802204 (
2019).
https://doi.org/10.1002/advs.201802204
|
| 139. |
|
| 140. |
X
.
Zhang
,
X.-F
.
Qiao
,
W
.
Shi
,
J.-B
.
Wu
,
D.-S
.
Jiang
et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material.
Chem. Soc. Rev.
44, 2757-2785 (
2015).
https://doi.org/10.1039/c4cs00282b
|
| 141. |
C
.
Ramkumar
,
K.P
.
Jain
,
S.C
.
Abbi
, Resonant Raman scattering probe of alloying effect in GaAs1-xPx ternary alloy semiconductors.
Phys. Rev. B Condens. Matter
54, 7921-7928 (
1996).
https://doi.org/10.1103/physrevb.54.7921
|
| 142. |
Y
.
Chen
,
D.O
.
Dumcenco
,
Y
.
Zhu
,
X
.
Zhang
,
N
.
Mao
et al., Composition-dependent Raman modes of Mo
1-
xW
xS
2monolayer alloys.
Nanoscale
6, 2833-2839 (
2014).
https://doi.org/10.1039/C3NR05630A
|
| 143. |
X
.
Gan
,
R
.
Lv
,
X
.
Wang
,
Z
.
Zhang
,
K
.
Fujisawa
et al., Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution.
Carbon
132, 512-519 (
2018).
https://doi.org/10.1016/j.carbon.2018.02.025
|
| 144. |
Y
.
Sun
,
K
.
Fujisawa
,
Z
.
Lin
,
Y
.
Lei
,
J.S
.
Mondschein
et al., Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties.
J. Am. Chem. Soc.
139, 11096-11105 (
2017).
https://doi.org/10.1021/jacs.7b04443
|
| 145. |
D
.
Wang
,
X
.
Zhang
,
G
.
Guo
,
S
.
Gao
,
X
.
Li
et al., Large-area synthesis of layered HfS
2(1-
x
)Se
2
xalloys with fully tunable chemical compositions and bandgaps.
Adv. Mater.
30, e1803285 (
2018).
https://doi.org/10.1002/adma.201803285
|
| 146. |
A
.
Apte
,
A
.
Krishnamoorthy
,
J.A
.
Hachtel
,
S
.
Susarla
,
J.C
.
Idrobo
et al., Telluride-based atomically thin layers of ternary two-dimensional transition metal dichalcogenide alloys.
Chem. Mater.
30, 7262-7268 (
2018).
https://doi.org/10.1021/acs.chemmater.8b03444
|
| 147. |
|
| 148. |
Q
.
Fu
,
J
.
Han
,
X
.
Wang
,
P
.
Xu
,
T
.
Yao
et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis.
Adv. Mater.
33, e1907818 (
2021).
https://doi.org/10.1002/adma.201907818
|
| 149. |
A.K
.
Chanchal
, Garg, MREI-model calculations of optical phonons in layered mixed crystals of 2H-polytype of the series SnS
2-
xSe
x(0⩽x⩽2).
Phys. B Condens. Matter
383, 188-193 (
2006).
https://doi.org/10.1016/j.physb.2006.03.009
|
| 150. |
|
| 151. |
I.F
.
Chang
,
S.S
.
Mitra
, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals.
Phys. Rev.
172, 924-933 (
1968).
https://doi.org/10.1103/physrev.172.924
|
| 152. |
|
| 153. |
|
| 154. |
A
.
Sebastian
,
R
.
Pendurthi
,
T.H
.
Choudhury
,
J.M
.
Redwing
,
S
.
Das
, Benchmarking monolayer MoS
2and WS
2field-effect transistors.
Nat. Commun.
12, 693 (
2021).
https://doi.org/10.1038/s41467-020-20732-w
|
| 155. |
B
.
Liu
,
Y
.
Ma
,
A
.
Zhang
,
L
.
Chen
,
A.N
.
Abbas
et al., High-performance WSe
2field-effect transistors via controlled formation of In-plane heterojunctions.
ACS Nano
10, 5153-5160 (
2016).
https://doi.org/10.1021/acsnano.6b00527
|
| 156. |
H
.
Zhou
,
C
.
Wang
,
J.C
.
Shaw
,
R
.
Cheng
,
Y
.
Chen
et al., Large area growth and electrical properties of p-type WSe
2atomic layers.
Nano Lett.
15, 709-713 (
2015).
https://doi.org/10.1021/nl504256y
|
| 157. |
K
.
Xu
,
A
.
Sharma
,
S
.
Kang
,
J
.
Kang
,
X
.
Hu
et al., Heterogeneous electronic and photonic devices based on monolayer ternary telluride core/shell structures.
Adv. Mater.
33, e2100343 (
2021).
https://doi.org/10.1002/adma.202100343
|
| 158. |
K.-C
.
Chen
,
C.-Y
.
Jian
,
Y.-J
.
Chen
,
S.-C
.
Lee
,
S.-W
.
Chang
et al., Current enhancement and bipolar current modulation of top-gate transistors based on monolayer MoS
2on three-layer W
xMo
1-
xS
2.
ACS Appl. Mater. Interfaces
10, 24733-24738 (
2018).
https://doi.org/10.1021/acsami.8b06327
|
| 159. |
V.T
.
Vu
,
T.T.H
.
Vu
,
T.L
.
Phan
,
W.T
.
Kang
,
Y.R
.
Kim
et al., One-step synthesis of NbSe
2/Nb-doped-WSe
2metal/doped-semiconductor van der waals heterostructures for doping controlled ohmic contact.
ACS Nano
15, 13031-13040 (
2021).
https://doi.org/10.1021/acsnano.1c02038
|
| 160. |
W
.
Zhou
,
X
.
Zou
,
S
.
Najmaei
,
Z
.
Liu
,
Y
.
Shi
et al., Intrinsic structural defects in monolayer molybdenum disulfide.
Nano Lett.
13, 2615-2622 (
2013).
https://doi.org/10.1021/nl4007479
|
| 161. |
H
.
Tian
,
M.L
.
Chin
,
S
.
Najmaei
,
Q
.
Guo
,
F
.
Xia
et al., Optoelectronic devices based on two-dimensional transition metal dichalcogenides.
Nano Res.
9, 1543-1560 (
2016).
https://doi.org/10.1007/s12274-016-1034-9
|
| 162. |
H
.
Qiu
,
T
.
Xu
,
Z
.
Wang
,
W
.
Ren
,
H
.
Nan
et al., Hopping transport through defect-induced localized states in molybdenum disulphide.
Nat. Commun.
4, 2642 (
2013).
https://doi.org/10.1038/ncomms3642
|
| 163. |
Y.R
.
Lim
,
J.K
.
Han
,
Y
.
Yoon
,
J.B
.
Lee
,
C
.
Jeon
et al., Atomic-level customization of 4 in transition metal dichalcogenide multilayer alloys for industrial applications.
Adv. Mater.
31, e1901405 (
2019).
https://doi.org/10.1002/adma.201901405
|
| 164. |
H
.
Xu
,
J
.
Zhu
,
G
.
Zou
,
W
.
Liu
,
X
.
Li
et al., Spatially bandgap-graded MoS
2(1-
x
)Se
2
xhomojunctions for self-powered visible-near-infrared phototransistors.
Nano-Micro Lett.
12, 26 (
2020).
https://doi.org/10.1007/s40820-019-0361-2
|
| 165. |
P
.
Chauhan
,
G.K
.
Solanki
,
A.B
.
Patel
,
K
.
Patel
,
P
.
Pataniya
et al., Tunable and anisotropic photoresponse of layered Re
0.2Sn
0.8Se
2ternary alloy.
Sol. Energy Mater. Sol. Cells
200, 109936
2019).
https://doi.org/10.1016/j.solmat.2019.109936
|
| 166. |
J
.
Ye
,
K
.
Liao
,
X
.
Ge
,
Z
.
Wang
,
Y
.
Wang
et al., Narrowing bandgap of HfS
2by Te substitution for short-wavelength infrared photodetection.
Adv. Opt. Mater.
9, 2002248 (
2021).
https://doi.org/10.1002/adom.202002248
|
| 167. |
T.F
.
Jaramillo
,
K.P
.
Jørgensen
,
J
.
Bonde
,
J.H
.
Nielsen
,
S
.
Horch
et al., Identification of active edge sites for electrochemical H
2evolution from MoS2 nanocatalysts.
Science
317, 100-102 (
2007).
https://doi.org/10.1126/science.1141483
|
| 168. |
W
.
Xu
,
S
.
Li
,
S
.
Zhou
,
J.K
.
Lee
,
S
.
Wang
et al., Large dendritic monolayer MoS 2 grown by atmospheric pressure chemical vapor deposition for electrocatalysis.
ACS Appl. Mater. Interfaces
10, 4630-4639 (
2018).
https://doi.org/10.1021/acsami.7b14861
|
| 169. |
Z
.
Lai
,
A
.
Chaturvedi
,
Y
.
Wang
,
T.H
.
Tran
,
X
.
Liu
et al., Preparation of 1T’-phase ReS
2
xSe
2(1-
x
)(x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction.
J. Am. Chem. Soc.
140, 8563-8568 (
2018).
https://doi.org/10.1021/jacs.8b04513
|
| 170. |
Y
.
Lei
,
S
.
Pakhira
,
K
.
Fujisawa
,
X
.
Wang
,
O.O
.
Iyiola
et al., Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (W
xMo
1-
xS
2) and graphene with superior catalytic performance for hydrogen evolution.
ACS Nano
11, 5103-5112 (
2017).
https://doi.org/10.1021/acsnano.7b02060
|
| 171. |
J
.
Xu
,
X
.
Li
,
W
.
Liu
,
Y
.
Sun
,
Z
.
Ju
et al., Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers.
Angew. Chem. Int. Ed.
56, 9121-9125 (
2017).
https://doi.org/10.1002/anie.201704928
|
| 172. |
G
.
Shao
,
Y
.
Lu
,
J
.
Hong
,
X.-X
.
Xue
,
J
.
Huang
et al., Seamlessly splicing metallic Sn
xMo
1-
xS
2at MoS
2edge for enhanced photoelectrocatalytic performance in microreactor.
Adv. Sci.
7, 2002172 (
2020).
https://doi.org/10.1002/advs.202002172
|
| 173. |
F
.
Li
,
W
.
Wei
,
H
.
Wang
,
B
.
Huang
,
Y
.
Dai
et al., Intrinsic electric field-induced properties in Janus MoSSe van der waals structures.
J. Phys. Chem. Lett.
10, 559-565 (
2019).
https://doi.org/10.1021/acs.jpclett.8b03463
|
| 174. |
|
| 175. |
|
| 176. |
C
.
Zhang
,
Y
.
Nie
,
S
.
Sanvito
,
A
.
Du
, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization.
Nano Lett.
19, 1366-1370 (
2019).
https://doi.org/10.1021/acs.nanolett.8b05050
|
| 177. |
J
.
Liang
,
W
.
Wang
,
H
.
Du
,
A
.
Hallal
,
K
.
Garcia
et al., Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states.
Phys. Rev. B
101, 184401
2020).
https://doi.org/10.1103/physrevb.101.184401
|
| 178. |
A.C
.
Riis-Jensen
,
T
.
Deilmann
,
T
.
Olsen
,
K.S
.
Thygesen
, Classifying the electronic and optical properties of Janus monolayers.
ACS Nano
13, 13354-13364 (
2019).
https://doi.org/10.1021/acsnano.9b06698
|
| 179. |
S
.
Haastrup
,
M
.
Strange
,
M
.
Pandey
,
T
.
Deilmann
,
P.S
.
Schmidt
et al., The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals.
2D Mater.
5, 042002 (
2018).
https://doi.org/10.1088/2053-1583/aacfc1
|
| 180. |
M.N
.
Gjerding
,
A
.
Taghizadeh
,
A
.
Rasmussen
,
S
.
Ali
,
F
.
Bertoldo
et al., Recent progress of the computational 2D materials database (C2DB).
2D Mater.
8, 044002 (
2021).
https://doi.org/10.1088/2053-1583/ac1059
|
| 181. |
|
| 182. |
Y.-C
.
Lin
,
C
.
Liu
,
Y
.
Yu
,
E
.
Zarkadoula
,
M
.
Yoon
et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures.
ACS Nano
14, 3896-3906 (
2020).
https://doi.org/10.1021/acsnano.9b10196
|
| 183. |
X
.
Wan
,
E
.
Chen
,
J
.
Yao
,
M
.
Gao
,
X
.
Miao
et al., Synthesis and characterization of metallic Janus MoSH monolayer.
ACS Nano
15, 20319-20331 (
2021).
https://doi.org/10.1021/acsnano.1c08531
|
| 184. |
|
| 185. |
S
.
Jia
,
A
.
Bandyopadhyay
,
H
.
Kumar
,
J
.
Zhang
,
W
.
Wang
et al., Biomolecular sensing by surface-enhanced Raman scattering of monolayer Janus transition metal dichalcogenide.
Nanoscale
12, 10723-10729 (
2020).
https://doi.org/10.1039/D0NR00300J
|
| 186. |
W.-J
.
Yin
,
B
.
Wen
,
G.-Z
.
Nie
,
X.-L
.
Wei
,
L.-M
.
Liu
, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure.
J. Mater. Chem. C
6, 1693-1700 (
2018).
https://doi.org/10.1039/C7TC05225A
|
| 187. |
M
.
Idrees
,
H.U
.
Din
,
R
.
Ali
,
G
.
Rehman
,
T
.
Hussain
et al., Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures.
Phys. Chem. Chem. Phys.
21, 18612-18621 (
2019).
https://doi.org/10.1039/C9CP02648G
|
| 188. |
S
.
Susarla
,
A
.
Kutana
,
J.A
.
Hachtel
,
V
.
Kochat
,
A
.
Apte
et al., Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap.
Adv. Mater.
29, 1702457 (
2017).
https://doi.org/10.1002/adma.201702457
|
| 189. |
|
| 190. |
I.S
.
Kwon
,
S.J
.
Lee
,
J.Y
.
Kim
,
I.H
.
Kwak
,
G.M
.
Zewdie
et al., Composition-tuned (MoWV)Se
2ternary alloy nanosheets as excellent hydrogen evolution reaction electrocatalysts.
ACS Nano
17, 2968-2979 (
2023).
https://doi.org/10.1021/acsnano.2c11528
|
| 191. |
T
.
Joseph
,
M
.
Ghorbani-Asl
,
A.G
.
Kvashnin
,
K.V
.
Larionov
,
Z.I
.
Popov
et al., Nonstoichiometric phases of two-dimensional transition-metal dichalcogenides: from chalcogen vacancies to pure metal membranes.
J. Phys. Chem. Lett.
10, 6492-6498 (
2019).
https://doi.org/10.1021/acs.jpclett.9b02529
|
| 192. |
|
| 193. |
B
.
An
,
Y
.
Ma
,
F
.
Chu
,
X
.
Li
,
Y
.
Wu
et al., Growth of centimeter scale Nb
1-
xW
xSe
2monolayer film by promoter assisted liquid phase chemical vapor deposition.
Nano Res.
15, 2608-2615 (
2022).
https://doi.org/10.1007/s12274-021-3825-x
|
| 194. |
S
.
Park
,
S.J
.
Yun
,
Y.I
.
Kim
,
J.H
.
Kim
,
Y.M
.
Kim
et al., Tailoring domain morphology in monolayer NbSe
2and W
xNb
1-
xSe
2heterostructure.
ACS Nano
14, 8784-8792 (
2020).
https://doi.org/10.1021/acsnano.0c03382
|
| 195. |
X
.
Li
,
F
.
Cui
,
Q
.
Feng
,
G
.
Wang
,
X
.
Xu
et al., Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application.
Nanoscale
8, 18956-18962 (
2016).
https://doi.org/10.1039/C6NR07233J
|
| 196. |
F
.
Cui
,
X
.
Li
,
Q
.
Feng
,
J
.
Yin
,
L
.
Zhou
et al., Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer.
Nano Res.
10, 2732-2742 (
2017).
https://doi.org/10.1007/s12274-017-1477-7
|
| 197. |
|
| 198. |
S.G
.
Yi
,
S.H
.
Kim
,
S
.
Park
,
D
.
Oh
,
H.Y
.
Choi
et al., Mo1-xWxSe2-based Schottky junction photovoltaic cells.
ACS Appl. Mater. Interfaces
8, 33811-33820 (
2016).
https://doi.org/10.1021/acsami.6b11768
|
| 199. |
K.C
.
Kwon
,
T.H
.
Lee
,
S
.
Choi
,
K.S
.
Choi
,
S.O
.
Gim
et al., Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes.
Appl. Surf. Sci.
541, 148529 (
2021).
https://doi.org/10.1016/j.apsusc.2020.148529
|
| 200. |
R
.
Yang
,
L
.
Liu
,
S
.
Feng
,
Y
.
Liu
,
S
.
Li
et al., One-step growth of spatially graded Mo
1-
xW
xS
2monolayers with a wide span in composition (from x = 0 to 1) at a large scale.
ACS Appl. Mater. Interfaces
11, 20979-20986 (
2019).
https://doi.org/10.1021/acsami.9b03608
|