外科理论与实践 ›› 2025, Vol. 30 ›› Issue (05): 450-455.doi: 10.16139/j.1007-9610.2025.05.12
张天齐1,2,3, 刘洋1,2,3(
), 魏云巍1,2,3(
)
收稿日期:2025-05-05
出版日期:2025-09-25
发布日期:2025-12-09
通讯作者:
刘洋,E-mail: lyang712@icloud.com;基金资助:
ZHANG Tianqi1,2,3, LIU Yang1,2,3(
), WEI Yunwei1,2,3(
)
Received:2025-05-05
Online:2025-09-25
Published:2025-12-09
摘要:
肠道微生态与肝细胞癌(hepatocellular carcinoma,HCC)发生与发展关系密切。肠道菌群及其代谢产物可通过“肠-肝轴”调控肿瘤免疫微环境,促进癌症进展。因此,肠道微生物组逐渐展现出作为HCC早期诊断和免疫治疗疗效预测生物标志物的潜力。靶向肠道微生态干预(如益生菌、粪便菌群移植、饮食调控等)可增强免疫检查点抑制剂(ICIs)疗效,正在成为具有前景的联合治疗策略。未来,HCC治疗将依托多组学整合、人工智能辅助诊疗与合成生物学手段,推动肠道菌群精准干预策略从基础研究向临床转化。本文综述了肠道微生态在HCC中的最新研究进展,探讨其在HCC精准诊疗中的潜在价值及发展方向,为相关干预策略的临床应用提供理论依据。
中图分类号:
张天齐, 刘洋, 魏云巍. 肠道微生态在肝细胞癌发生发展中的研究进展及其对临床诊疗的潜在应用[J]. 外科理论与实践, 2025, 30(05): 450-455.
ZHANG Tianqi, LIU Yang, WEI Yunwei. Advances in the study of intestinal microecology in the development of hepatocellular carcinoma and its implications for clinical diagnosis and treatment[J]. Journal of Surgery Concepts & Practice, 2025, 30(05): 450-455.
| [1] | YANG J, YANG Y, ISHII M, et al. Does the gut microbiota modulate host physiology through polymicrobial biofilms?[J]. Microbes Environ, 2020, 35(3):ME20037. |
| [2] |
MCKENNA P, HOFFMANN C, MINKAH N, et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis[J]. PLoS Pathog, 2008, 4(2):e20.
doi: 10.1371/journal.ppat.0040020 URL |
| [3] |
THOMAS A M, FIDELLE M, ROUTY B, et al. Gut oncomicrobiome signatures (GOMS) as next-generation biomarkers for cancer immunotherapy[J]. Nat Rev Clin Oncol, 2023, 20(9):583-603.
doi: 10.1038/s41571-023-00785-8 pmid: 37365438 |
| [4] | 许芳琪, 李博文, 刘洋, 等. 具核梭杆菌通过E-cadherin/β-catenin信号上调结直肠癌ABCG2表达诱导奥沙利铂耐药[J]. 中华肿瘤杂志, 2025, 47(4):329-339. |
| XU F Q, LI B W, LIU Y, et al. Fusobacterium nucleatum upregulates ABCG2 by activating the E-cadherin/β-catenin signaling pathway to promote oxaliplatin resistance in colorectal cancer[J]. Chin J Oncol, 2025, 47(4):329-339. | |
| [5] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. |
| [6] |
BEHARY J, AMORIM N, JIANG X T, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma[J]. Nat Commun, 2021, 12(1):187.
doi: 10.1038/s41467-020-20422-7 pmid: 33420074 |
| [7] |
TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7):397-411.
doi: 10.1038/s41575-018-0011-z pmid: 29748586 |
| [8] |
WANG X, FANG Y, LIANG W, et al. Gut-liver translocation of pathogen Klebsiella pneumoniae promotes hepatocellular carcinoma in mice[J]. Nat Microbiol, 2025, 10(1):169-184.
doi: 10.1038/s41564-024-01890-9 |
| [9] |
PONTAROLLO G, KOLLAR B, MANN A, et al. Commensal bacteria weaken the intestinal barrier by suppressing epithelial neuropilin-1 and Hedgehog signaling[J]. Nat Metab, 2023, 5(7):1174-1187.
doi: 10.1038/s42255-023-00828-5 pmid: 37414930 |
| [10] |
MANFREDO VIEIRA S, HILTENSPERGER M, KUMAR V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359(6380):1156-1161.
doi: 10.1126/science.aar7201 pmid: 29590047 |
| [11] |
XING L, ZHANG Y, LI S, et al. A dual coverage monitoring of the bile acids profile in the liver-gut axis throughout the whole inflammation-cancer transformation progressive: reveal hepatocellular carcinoma pathogenesis[J]. Int J Mol Sci, 2023, 24(5):4258.
doi: 10.3390/ijms24054258 URL |
| [12] |
LIANG Z, LI S, WANG Z, et al. Unraveling the role of the Wnt pathway in hepatocellular carcinoma: from molecular mechanisms to therapeutic implications[J]. J Clin Transl Hepatol, 2025, 13(4):315-326.
doi: 10.14218/JCTH.2024.00401 pmid: 40206274 |
| [13] | LIN W, LI S, MENG Y, et al. UDCA inhibits hypoxic hepatocellular carcinoma cell-induced angiogenesis through suppressing HIF-1α/VEGF/IL-8 intercellular signaling[J]. Front Pharmacol, 2021,12:755394. |
| [14] |
WILLEMSEN L E, KOETSIER M A, VAN DEVENTER S J, et al. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts[J]. Gut, 2003, 52(10):1442-1447.
doi: 10.1136/gut.52.10.1442 pmid: 12970137 |
| [15] | LOUIS P, FLINT H J. Formation of propionate and buty-rate by the human colonic microbiota[J]. Environ Microbiol, 2017, 19(1):29-41. |
| [16] |
WANG W, DERNST A, MARTIN B, et al. Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation[J]. Cell Rep, 2024, 43(9):114736.
doi: 10.1016/j.celrep.2024.114736 URL |
| [17] | HAN J, ZHANG S, XU Y, et al. Beneficial effect of antibiotics and microbial metabolites on expanded Vδ2Vγ9 T cells in hepatocellular carcinoma immunotherapy[J]. Front Immunol, 2020,11:1380. |
| [18] |
CHEN W, WEN L, BAO Y, et al. Gut flora disequilibrium promotes the initiation of liver cancer by modulating tryptophan metabolism and up-regulating SREBP2[J]. Proc Natl Acad Sci USA, 2022, 119(52):e2203894119.
doi: 10.1073/pnas.2203894119 URL |
| [19] |
SEYMOUR B J, TRENT B, ALLEN B E, et al. Microbiota-dependent indole production stimulates the deve-lopment of collagen-induced arthritis in mice[J]. J Clin Invest, 2023, 134(4):e167671.
doi: 10.1172/JCI167671 URL |
| [20] |
SHI Z, GAN G, GAO X, et al. Kynurenine catabolic enzyme KMO regulates HCC growth[J]. Clin Transl Med, 2022, 12(2):e697.
doi: 10.1002/ctm2.697 pmid: 35184386 |
| [21] |
TANG H, WU L. MAMPs: a devil tamed becomes an angel[J]. Cell Host Microbe, 2023, 31(9):1422-1425.
doi: 10.1016/j.chom.2023.08.009 pmid: 37708848 |
| [22] |
FITZGERALD K A, KAGAN J C. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6):1044-1066.
doi: S0092-8674(20)30218-X pmid: 32164908 |
| [23] |
SCHWABE R F, GRETEN T F. Gut microbiome in HCC - mechanisms, diagnosis and therapy[J]. J Hepatol, 2020, 72(2):230-238.
doi: S0168-8278(19)30483-0 pmid: 31954488 |
| [24] | YAMAGISHI R, KAMACHI F, NAKAMURA M, et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma[J]. Sci Immunol, 2022, 7(72):eabl7209. |
| [25] |
BHATT A P, SARTOR R B. 'Bugs on drugs': implications for gut health[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5):287-288.
doi: 10.1038/s41575-021-00437-1 pmid: 33692569 |
| [26] | BAI W, XIAO J. Third international symposium on phytochemicals in medicine and food[J]. Crit Rev Food Sci Nutr, 2019, 59(sup1):S1-S3. |
| [27] |
KIM S Y, AN J, LIM Y S, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma[J]. JAMA Oncol, 2017, 3(4):456-463.
doi: 10.1001/jamaoncol.2016.3147 pmid: 27657493 |
| [28] | XU F, ZHANG L, HE W, et al. The diagnostic value of serum PIVKA-Ⅱ alone or in combination with AFP in Chinese hepatocellular carcinoma patients[J]. Dis Mar-kers, 2021,2021:8868370. |
| [29] |
ZHANG H, WU J, LIU Y, et al. Identification reprodu-cible microbiota biomarkers for the diagnosis of cirrhosis and hepatocellular carcinoma[J]. AMB Express, 2023, 13(1):35.
doi: 10.1186/s13568-023-01539-6 |
| [30] |
ZHENG C, LU F, CHEN B, et al. Gut microbiome as a biomarker for predicting early recurrence of HBV-related hepatocellular carcinoma[J]. Cancer Sci, 2023, 114(12):4717-4731.
doi: 10.1111/cas.v114.12 URL |
| [31] |
FINN R S, QIN S, IKEDA M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20):1894-1905.
doi: 10.1056/NEJMoa1915745 URL |
| [32] |
YAU T, ZAGONEL V, SANTORO A, et al. Nivolumab plus cabozantinib with or without ipilimumab for advanced hepatocellular carcinoma: results from cohort 6 of the checkmate 040 trial[J]. J Clin Oncol, 2023, 41(9):1747-1757.
doi: 10.1200/JCO.22.00972 URL |
| [33] |
ZHOU C B, ZHOU Y L, FANG J Y. Gut microbiota in cancer immune response and immunotherapy[J]. Trends Cancer, 2021, 7(7):647-660.
doi: 10.1016/j.trecan.2021.01.010 URL |
| [34] | SIMPSON R C, SHANAHAN E R, SCOLYER R A, et al. Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors[J]. Nat Rev Clin Oncol, 2023, 20(10):697-715. |
| [35] |
ROUTY B, LE CHATELIER E, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97.
doi: 10.1126/science.aan3706 pmid: 29097494 |
| [36] |
HU J, WANG C, YE L, et al. Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice[J]. J Biosci, 2015, 40(2):269-279.
doi: 10.1007/s12038-015-9518-4 URL |
| [37] |
PONZIANI F R, DE LUCA A, PICCA A, et al. Gut dysbiosis and fecal calprotectin predict response to immune checkpoint inhibitors in patients with hepatocellular carcinoma[J]. Hepatol Commun, 2022, 6(6):1492-1501.
doi: 10.1002/hep4.1905 pmid: 35261212 |
| [38] |
GONG X, SHEN L, XIE J, et al. Helicobacter pylori infection reduces the efficacy of cancer immunotherapy: a systematic review and meta-analysis[J]. Helicobacter, 2023, 28(6):e13011.
doi: 10.1111/hel.v28.6 URL |
| [39] |
COUTZAC C, JOUNIAUX J M, PACI A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer[J]. Nat Commun, 2020, 11(1):2168.
doi: 10.1038/s41467-020-16079-x pmid: 32358520 |
| [40] |
MAGER L F, BURKHARD R, PETT N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510):1481-1489.
doi: 10.1126/science.abc3421 pmid: 32792462 |
| [41] | MIRJI G, WORTH A, BHAT S A, et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer[J]. Sci Immunol, 2022, 7(75):eabn0704. |
| [42] |
ZHU X, HU M, HUANG X, et al. Interplay between gut microbial communities and metabolites modulates pan-cancer immunotherapy responses[J]. Cell Metab, 2025, 37(4):806-823.e6.
doi: 10.1016/j.cmet.2024.12.013 pmid: 39909032 |
| [43] |
ZHANG Z, HUANG W, HU D, et al. E-twenty-six-specific sequence variant 5 (ETV5) facilitates hepatocellular carcinoma progression and metastasis through enhancing polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC)-mediated immunosuppression[J]. Gut, 2025, 74(7):1137-1149.
doi: 10.1136/gutjnl-2024-333944 URL |
| [44] |
LIU X, YANG W, PETRICK J L, et al. Higher intake of whole grains and dietary fiber are associated with lower risk of liver cancer and chronic liver disease mortality[J]. Nat Commun, 2021, 12(1):6388.
doi: 10.1038/s41467-021-26448-9 pmid: 34737258 |
| [45] | KOMEIL I A, EL-REFAIE W M, GOWAYED M A, et al. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma[J]. Int J Pharm, 2021,601:120564. |
| [46] | PINATO D J, LI X, MISHRA-KALYANI P, et al. Association between antibiotics and adverse oncological outcomes in patients receiving targeted or immune-based therapy for hepatocellular carcinoma[J]. JHEP Rep, 2023, 5(6):100747. |
| [47] |
FESSAS P, NAEEM M, PINTER M, et al. Early anti-biotic exposure is not detrimental to therapeutic effect from immunotherapy in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(6):583-592.
doi: 10.1159/000519108 URL |
| [48] | SHI K, ZHANG Q, ZHANG Y, et al. Association between probiotic therapy and the risk of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis[J]. Front Cell Infect Microbiol, 2022,12:1104399. |
| [49] |
ARAI N, MIURA K, AIZAWA K, et al. Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice[J]. Sci Rep, 2022, 12(1):16206.
doi: 10.1038/s41598-022-20296-3 pmid: 36171333 |
| [50] |
CAMMAROTA G, IANIRO G, TILG H, et al. European consensus conference on faecal microbiota transplantation in clinical practice[J]. Gut, 2017, 66(4):569-580.
doi: 10.1136/gutjnl-2016-313017 pmid: 28087657 |
| [51] |
LOPETUSO L R, DELEU S, GODNY L, et al. The first international Rome consensus conference on gut microbiota and faecal microbiota transplantation in inflammatory bowel disease[J]. Gut, 2023, 72(9):1642-1650.
doi: 10.1136/gutjnl-2023-329948 URL |
| [52] |
HUANG M, JI Q, HUANG H, et al. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification[J]. Gut Microbes, 2025, 17(1):2486519.
doi: 10.1080/19490976.2025.2486519 URL |
| [53] |
CHANG Z, GUO X, LI X, et al. Bacterial immunotherapy leveraging IL-10R hysteresis for both phagocytosis evasion and tumor immunity revitalization[J]. Cell, 2025, 188(7):1842-1857.e20.
doi: 10.1016/j.cell.2025.02.002 URL |
| [1] | 刘书萌, 艾鹏辉, 肖勤, 杨晓东. 胆汁酸与肠道微生物相互作用及其在帕金森病中的作用[J]. 内科理论与实践, 2025, 20(04): 345-350. |
| [2] | 罗茜, 蒋咏梅, 马迪, 陆秋涯, 顾晓寒. 肝细胞癌病人血清微量元素和氨基酸变化的观察研究[J]. 外科理论与实践, 2025, 30(02): 146-150. |
| [3] | 程健珊, 张弢, 吴珺玮, 高惠峰, 陈敬贤, 孟志强. 华蟾素片联合肝动脉化疗栓塞术治疗原发性肝细胞癌的临床疗效及其影响因素分析[J]. 外科理论与实践, 2024, 29(04): 351-357. |
| [4] | 赵磊, 钟敬涛, 孙惠川. 肝细胞癌的转化治疗中几个重要却尚无答案的问题[J]. 外科理论与实践, 2024, 29(02): 106-113. |
| [5] | 宋庆杰, 汤娟娟, 赵健全, 宋辉, 杨军. 高脂血症对乙肝相关肝细胞癌病人预后的影响[J]. 外科理论与实践, 2024, 29(02): 143-147. |
| [6] | 邵卫清, 陆录, 钦伦秀. 系统疗法改变肝癌外科的格局:机遇与挑战[J]. 外科理论与实践, 2024, 29(02): 93-98. |
| [7] | 施纯朝, 王葵. 2023年第2版NCCN肝细胞癌临床实践指南解读[J]. 外科理论与实践, 2024, 29(02): 99-105. |
| [8] | 张亦凡, 鲁逸权, 郝风节, 王俊青. 多倍体肝细胞的生理功能及其病理性改变的相关疾病[J]. 外科理论与实践, 2023, 28(06): 574-579. |
| [9] | 任新平, 李军建, 张杰, 詹维伟. 超声造影在肝局灶性病变诊疗中的应用进展[J]. 诊断学理论与实践, 2022, 21(06): 684-690. |
| [10] | 黄纪伟, 邱国腾, 曾勇. 肝细胞癌外科治疗进展[J]. 外科理论与实践, 2022, 27(02): 113-118. |
| [11] | 冯浩, 吕子成, 夏强. 肝癌肝移植全过程管理及治疗进展[J]. 外科理论与实践, 2022, 27(02): 119-122. |
| [12] | 马婧嶔, 杨敏捷, 颜志平. 精细TACE的治疗目标与栓塞终点[J]. 外科理论与实践, 2022, 27(02): 131-133. |
| [13] | 孙惠川. 肝细胞癌转化治疗的现状与展望[J]. 外科理论与实践, 2022, 27(02): 134-138. |
| [14] | 张希昊, 章馨允, 曹曼卿, 张金梁, 王华琪, 张苏, 付周, 王鲁, 张倜. 肝细胞癌的抗血管生成免疫联合介入治疗:肝动脉灌注化疗与化疗栓塞疗效的比较[J]. 外科理论与实践, 2022, 27(02): 152-157. |
| [15] | 管涛(综述), 张倜, 王鲁(审校). 肝细胞癌肺转移的潜在机制和治疗进展[J]. 外科理论与实践, 2022, 27(02): 180-184. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||