
外科理论与实践››2020,Vol. 25››Issue (02): 114-119.doi:10.16139/j.1007-9610.2020.02.006
收稿日期:2020-01-22出版日期:2020-03-25发布日期:2020-04-25通讯作者:孙建琴,E-mail:
Received:2020-01-22Online:2020-03-25Published:2020-04-25中图分类号:
孙建琴, 叶梦瑶. 老年肌肉衰减症的筛查、评估与干预[J]. 外科理论与实践, 2020, 25(02): 114-119.
SUN Jianqin, YE Mengyao. Screening, evaluation and intervention of sarcopenia in older people[J]. Journal of Surgery Concepts & Practice, 2020, 25(02): 114-119.
表1
肌肉衰减症诊断标准的比较
| 项目 | 切点制定及特点 | 诊断标准 | ||
|---|---|---|---|---|
| 指标 | 男性切点值 | 女性切点值 | ||
| Baumgartner诊断 标准(1998)[ |
基于Rosetta研究229名非西班牙裔白种年轻人(18~40岁)的数据制定参考切点:切点值设定为低于年轻参照组相应指标(均值-2SD) | ASM/身高2(DXA) |
<7.26 kg/m2 |
<5.45 kg/m2 |
| EWGSOP1(2010)[
|
提出从肌量、肌力、肌肉功能等综合评估。建议以健康年轻人作为参考人群,以低于年轻参照组相应指标(均值-2SD)作为参考切点值。握力与步速参考切点值基于针对肌肉衰减症病人研究的数据 |
肌量减少临界值 | ||
| ASM/身高2(DXA) |
年轻参照组相应指标 (平均值-2SD) |
|||
| 肌力下降临界值 | ||||
| 握力 | <30 kg | <20 kg | ||
| 低体力活动临界值 | ||||
| 步速 | ≤0.8 m/s | |||
| IWGS(2011)[
|
基于EWGSOP1(2010)的诊断标准,弥补EWGSOP1(2010)缺少肌量具体参考切点的不足 | ASM/身高2(DXA) | ≤7.23 kg/m2 | ≤5.67 kg/m2 |
| 步速 | <1 m/s | |||
| AWGS(2014)[
|
针对亚洲人群,综合多项亚洲人群研究结果,采用多项指标综合评估切点制定:使用低于年轻参照组相应指标的(均值-2SD)或低于年轻参照组相应指标的下五分位数为切点值;部分指标的切点值来自肌肉衰减症病人研究的数据 |
肌量减少临界值 | ||
| ASM/身高2(DXA) | <7.0 kg/m2 | <5.7 kg/m2 | ||
| 或ASM/身高2(BIA) | <7.0 kg/m2 | <5.4 kg/m2 | ||
| 肌力下降临界值 | ||||
| 握力 | <26 kg | <18 kg | ||
| 低体力活动临界值 | ||||
| 步速 | ≤0.8 m/s | |||
| FNIH(2014)[
|
利用9项大型临床研究的数据(共26 625名参与者)制定切点,人群广泛多样;切点制定时强调体重对临界值的影响 |
肌力下降临界值 | ||
| 握力 | <26 kg | <16 kg | ||
| 或BMI校正的握力 | <1.0 | <0.56 | ||
| 肌量减少临界值 | ||||
| BMI校正的ASM | <0.789 | <0.512 | ||
| 或ASM (DXA) | <19.75 kg | <15.02 kg | ||
| 低体力活动临界值 | ||||
| 步速 | ≤0.8 m/s | |||
| EWGSOP2(2018)[
|
针对欧洲人群,切点制定仍沿用低于年轻参照组的相应指标(平均值-2SD);部分特定情况下,建议使用(均值-2.5SD)。步速、握力等指标的切点值仍采用针对肌肉衰减症病人研究的数据 |
肌力下降临界值 | ||
| 握力 | <27 kg | <16 kg | ||
| 座椅起蹲试验 | 起蹲5次耗时>15 s | |||
| 肌量减少临界值 | ||||
| ASM (DXA) | <20 kg | <15 kg | ||
| ASM/身高2(DXA) | <7.0 kg/m2 | <5.5 kg/m2 | ||
| 低体力活动临界值 | ||||
| 步速 | ≤0.8 m/s | |||
| SPPB | ≤8分 | |||
| TUG | ≥20 s | |||
| 400 m行走 | 未完成或≥6 min才完成 | |||
| [1] | Rosenberg IH. Sarcopenia: origins and clinical relevance[J]. J Nutr, 1997, 127(5 Suppl):990s-991s. doi:10.1093/jn/127.5.990SURL |
| [2] | Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People[J]. Age Ageing, 2010, 39(4):412-423. doi:10.1093/ageing/afq034pmid:20392703 |
| [3] | Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age and Ageing, 2019, 48(1):16-31. doi:10.1093/ageing/afy169pmid:30312372 |
| [4] | Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2):95-101. doi:10.1016/j.jamda.2013.11.025URL |
| [5] | Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an International Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code[J]. J Am Med Dir Assoc, 2016, 17(8):675-677. doi:10.1016/j.jamda.2016.06.001pmid:27470918 |
| [6] | Chen LK, Lee WJ, Peng LN, et al. Recent advances in sarcopenia research in Asia: 2016 update from the Asian Working Group for Sarcopenia[J]. J Am Med Dir Assoc, 2016, 17(8):767.e1-e7. doi:10.1016/j.jamda.2016.05.016URL |
| [7] | Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): screening, diagnosis and management[J]. J Nutr Health Aging, 2018, 22(10):1148-1161. doi:10.1007/s12603-018-1139-9pmid:30498820 |
| [8] | Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico[J]. Am J Epidemiol, 1998, 147(8):755-763. doi:10.1093/oxfordjournals.aje.a009520pmid:9554417 |
| [9] | Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia[J]. J Am Med Dir Assoc, 2011, 12(4):249-256. doi:10.1016/j.jamda.2011.01.003pmid:21527165 |
| [10] | Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, confe-rence recommendations, and final estimates[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(5):547-558. doi:10.1093/gerona/glu010URL |
| [11] | Tessier AJ, Chevalier S. An update on protein, leucine, omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline[J]. Nutrients, 2018, 10(8).pii: E1099. doi: 10.3390/nu10081099. doi:10.3390/nu10081099 |
| [12] | Traylor DA, Gorissen SHM, Phillips SM. Perspective: protein requirements and optimal intakes in aging: are we ready to recommend more than the recommended daily allowance?[J]. Adv Nutr, 2018, 9(3):171-182. doi:10.1093/advances/nmy003pmid:29635313 |
| [13] | 孙建琴, 张坚, 常翠青, 等. 肌肉衰减综合征营养与运动干预中国专家共识(节录)[J]. 营养学报, 2015, 37(4): 320-324. |
| [14] | Wu H, Xia Y, Jiang J, et al. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: a systematic review and meta-analysis[J]. Arch Gerontol Geriatr, 2015, 61(2):168-175. doi:10.1016/j.archger.2015.06.020URL |
| [15] | Lanza IR, Zabielski P, Klaus KA, et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis[J]. Cell Metabolism, 2012, 16(6):777-788. doi:10.1016/j.cmet.2012.11.003pmid:23217257 |
| [16] | Dirks AJ, Leeuwenburgh C. Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12[J]. Free Radic Biol Med, 2004, 36(1):27-39. doi:10.1016/j.freeradbiomed.2003.10.003URL |
| [17] | Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise[J]. Exp Gerontol, 2010, 45(2):138-148. doi:10.1016/j.exger.2009.11.002pmid:19903516 |
| [18] | Kunkel SD, Suneja M, Ebert SM, et al. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass[J]. Cell Metab, 2011, 13(6):627-638. doi:10.1016/j.cmet.2011.03.020URL |
| [19] | Yu R, Chen JA, Xu J, et al. Suppression of muscle was-ting by the plant-derived compound ursolic acid in a model of chronic kidney disease[J]. J Cachexia Sarcopenia Muscle, 2017, 8(2):327-341. doi:10.1002/jcsm.12162URL |
| [20] | Varian BJ, Gourishetti S, Poutahidis T, et al. Beneficial bacteria inhibit cachexia[J]. Oncotarget, 2016, 7(11):11803-11816. doi:10.18632/oncotarget.7730URL |
| [21] | Caputi V, Marsilio I, Filpa V, et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice[J]. Br J Pharmacol, 2017, 174(20):3623-3639. doi:10.1111/bph.13965URL |
| [22] | Buigues C, Fernandez-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial[J]. Int J Mol Sci, 2016, 17(6):pii: E932. doi: 10.3390/ijms17060932. doi:10.3390/ijms17060932 |
| [23] | Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis?[J]. Nutrients, 2017, 9(12): pii: E1303. doi: 10.3390/nu9121303. doi:10.3390/nu9121303 |
| [24] | Marzetti E, Calvani R, Tosato M, et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia[J]. Aging Clin Exp Res, 2017, 29(1):35-42. |
| [25] | Peterson MD, Rhea MR, Sen A, et al. Resistance exercise for muscular strength in older adults: a meta-analysis[J]. Ageing Res Rev, 2010, 9(3):226-237. doi:10.1016/j.arr.2010.03.004pmid:20385254 |
| [26] | Law TD, Clark LA, Clark BC. Resistance exercise to prevent and manage sarcopenia and dynapenia[J]. Annu Rev Gerontol Geriatr, 2016, 36(1):205-228. doi:10.1891/0198-8794.36.205URL |
| [27] | Lee SJ. Regulation of muscle mass by myostatin[J]. Annu Rev Cell Dev Biol, 2004, 20:61-86. doi:10.1146/annurev.cellbio.20.012103.135836URL |
| [28] | Murphy KT, Koopman R, Naim T, et al. Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function[J]. FASEB J, 2010, 24(11):4433-4442. doi:10.1096/fj.10-159608pmid:20624929 |
| [29] | Murphy KT, Ryall JG, Snell SM, et al. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice[J]. Am J Pathol, 2010, 176(5):2425-2434. doi:10.2353/ajpath.2010.090932pmid:20363926 |
| [30] | Holzbaur EL, Howland DS, Weber N, et al. Myostatin inhibition slows muscle atrophy in rodent models of amyo-trophic lateral sclerosis[J]. Neurobiol Dis, 2006, 23(3):697-707. pmid:16837207 |
| [31] | Lebrasseur NK, Schelhorn TM, Bernardo BL, et al. Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice[J]. J Gerontol A Biol Sci Med Sci, 2009, 64(9):940-948. |
| [32] | Becker C, Lord SR, Studenski SA, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial[J]. Lancet Diabetes Endocrinol, 2015, 3(12):948-957. doi:10.1016/S2213-8587(15)00298-3URL |
| [33] | Bhasin S, Calof OM, Storer TW, et al. Drug insight: Testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging[J]. Nat Clin Pract Endocrinol Metab, 2006, 2(3):146-159. doi:10.1038/ncpendmet0120URL |
| [34] | Sinha-Hikim I, Cornford M, Gaytan H, et al. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men[J]. J Clin Endocrinol Metab, 2006, 91(8):3024-3033. doi:10.1210/jc.2006-0357URL |
| [35] | Onder G, Penninx BW, Balkrishnan R, et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study[J]. Lancet, 2002, 359(9310):926-930. doi:10.1016/S0140-6736(02)08024-8URL |
| [36] | Maggio M, Ceda GP, Lauretani F, et al. Relation of angiotensin-converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 years of age(the InCHIANTI study)[J]. Am J Cardiol, 2006, 97(10):1525-1529. doi:10.1016/j.amjcard.2005.11.089URL |
| [1] | 颜文婷, 杨隆, 李长城, 罗伟.考虑地震攻击交通网影响的配电网韧性评估及提升策略[J]. 开云网页登录 学报, 2023, 57(9): 1165-1175. |
| [2] | 胡铭轩, 乔钧, 张执南.连续康复训练动作分割与评估[J]. 开云网页登录 学报, 2023, 57(5): 533-544. |
| [3] | 王慧 龚黎青 郭洪芳 顾晓琳.
标准化术前访视对面神经瘫痪修复重建手术治疗的影响
[J]. 组织工程与重建外科杂志, 2023, 19(3): 294-. |
| [4] | 苏泓嘉, 罗宇成, 刘飞.装备体系效能评估及支撑技术综述[J]. 空天防御, 2023, 6(3): 30-39. |
| [5] | 白婷婷, 李菲卡, 徐刚, 蒋倩雯, 吴方.老年功能受损风险简易预测模型构建[J]. 内科理论与实践, 2023, 18(03): 177-182. |
| [6] | 骆洋, 钟鸣.腹腔镜低位直肠癌前切除术吻合口漏的预防和治疗[J]. 外科理论与实践, 2023, 28(03): 220-225. |
| [7] | 张音, 沈宏华, 许轶明, 任蕾, 李骏, 吴顺军, 凌小楠.肌少症合并腹型肥胖对住院老年人肌力及躯体功能的影响[J]. 内科理论与实践, 2023, 18(02): 76-82. |
| [8] | 李嫣然, 徐琛莹, 荣岚, 林青.临床老年慢性非传染性疾病患者5年代谢指标变化趋势的关联研究[J]. 内科理论与实践, 2023, 18(02): 87-91. |
| [9] | 于岚, 张永怡, 黄雷, 万歆, 姜胜耀, 唐思静, 张俊, 胡伟国.老年病人胰十二指肠切除术后严重并发症发生的危险因素[J]. 外科理论与实践, 2023, 28(02): 139-146. |
| [10] | 陆玮, 李叙婷, 虞蔚滨, 夏一梦, 范秋维.胃肠镜麻醉前评估病人的连续心脏指数与左心室射血分数相关性[J]. 外科理论与实践, 2023, 28(02): 152-156. |
| [11] | 杨文洁, 严福华.2022年美国国立综合癌症网络(NCCN)《肺癌筛查临床实践指南》(第2版)解读[J]. 诊断学理论与实践, 2023, 22(01): 14-20. |
| [12] | 钱莹, 马晓波, 高琛妮, 陈孜瑾, 马骏, 俞海瑾, 张文, 陈晓农.骨折风险评估工具在评估维持性血液透析患者骨折风险中的效能[J]. 诊断学理论与实践, 2023, 22(01): 50-57. |
| [13] | 中华医学会内分泌学分会.老年与儿童青少年糖尿病人群新型冠状病毒感染临床应对指南[J]. 内科理论与实践, 2023, 18(01): 10-12. |
| [14] | 张大元, 姜德胜, 陈冠宇, 孟飞翔.基于剩余作战能力的地空导弹武器系统生存效能评估方法研究[J]. 空天防御, 2022, 5(4): 24-29. |
| [15] | 周荣 综述 高伟成 审校.老年性上睑下垂发生机制研究进展[J]. 组织工程与重建外科杂志, 2022, 18(3): 281-. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||
