
Journal of Internal Medicine Concepts & Practice››2024,Vol. 19››Issue (04): 224-230.doi:10.16138/j.1673-6087.2024.04.02
• Original article •Previous ArticlesNext Articles
WANG Zhuoxin, HUANG Xinyang, JIN Yixun, WANG Lifu(
)
Received:2023-12-27Online:2024-08-28Published:2024-11-11CLC Number:
WANG Zhuoxin, HUANG Xinyang, JIN Yixun, WANG Lifu. Bioinformatics analysis and identification of cuproptosis characteristic genes for acute pancreatitis by machine learning[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 224-230.
| [1] | Gardner TB. Acute pancreatitis[J].Ann Intern Med,2021,174(2):ITC17-ITC32. |
| [2] | Staubli SM, Oertli D, Nebiker CA. Laboratory markers predicting severity of acute pancreatitis[J].Crit Rev Clin Lab Sci,2015,52(6):273-83. |
| [3] | Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J].Cell Res,2022,32(5): 417-418. doi:10.1038/s41422-022-00653-7pmid:35354936 |
| [4] | Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J].Science,2022,375(6586): 1254-1261. doi:10.1126/science.abf0529pmid:35298263 |
| [5] | Chen X, Dou QP, Liu J, et al. Targeting ubiquitin-proteasome system with copper complexes for cancer therapy[J].Front Mol Biosci,2021,8:649151. |
| [6] | Jiang Y, Huo Z, Qi X, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J].Nanomedicine (Lond),2022,17(5): 303-324. |
| [7] | Lv H, Liu X, Zeng X, et al. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma[J].Front Pharmacol,2022,13: 930041. |
| [8] | Song Q, Zhou R, Shu F, et al. Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer[J].Front Immunol,2022,13: 958368. |
| [9] | Zhang Z, Zeng X, Wu Y, et al. Cuproptosis-related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma[J].Front Immunol,2022,13: 925618. |
| [10] | Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J].Autophagy,2023,19(7): 1982-1996. |
| [11] | Xu C, Jackson SA. Machine learning and complex biological data[J].Genome Biol,2019,20(1): 76. |
| [12] | Morrissey MB, Goudie IBJ. Analytical results for directional and quadratic selection gradients for log-linear models of fitness functions[J].Evolution,2022,76(7): 1378-1390. doi:10.1111/evo.14486pmid:35340021 |
| [13] | Blanchet L, Vitale R, van Vorstenbosch R, et al. Constructing bi-plots for random forest[J].Anal Chim Acta,2020,1131:146-155. |
| [14] | Wang H, Shao Y, Zhou S, et al. Support vector machine classifier via L0/1 soft-margin loss[J].IEEE Trans Pattern Anal Mach Intell,2022,44(10):7253-7265. |
| [15] | Fernández-Delgado M, Sirsat MS, Cernadas E, et al. An extensive experimental survey of regression methods[J].Neural Netw,2019,111:11-34. |
| [16] | 刘耀阳, 吴歆, 周凌, 等. 基于生物标志物探索系统性红斑狼疮中医药治疗机制的研究进展[J].药学实践与服务,2023,41(4):197-201. |
| [17] | Bao JH, Lu WC, Duan H, et al. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas[J].Front Immunol,2022,13:933973. |
| [18] | Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J].Nucleic Acids Res,2015,43(7): e47. |
| [19] | Scharl T, Grü B, Leisch F. Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects[J].Bioinformatics,2010,26(3): 370-377. doi:10.1093/bioinformatics/btp686pmid:20040587 |
| [20] | Liu J, Liu Y, Wang Y, et al. HMGB1 is a mediator of cuproptosis-related sterile inflammation[J].Front Cell Dev Biol,2022,10:996307. |
| [21] | Lee PJ, Papachristou GI. New insights into acute pancreatitis[J].Nat Rev Gastroenterol Hepatol,2019,16(8): 479-496. doi:10.1038/s41575-019-0158-2pmid:31138897 |
| [22] | Zhang T, Gan Y, Zhu S. Association between autophagy and acute pancreatitis[J].Front Genet,2023,14: 998035. |
| [23] | Al Mamun A, Suchi SA, Aziz MA, et al. Pyroptosis in acute pancreatitis and its therapeutic regulation[J].Apoptosis,2022,27(7-8): 465-481. doi:10.1007/s10495-022-01729-wpmid:35687256 |
| [24] | Liu J, Song X, Kuang F, et al. NUPR1 is a critical repressor of ferroptosis[J].Nat Commun,2021,12(1): 647. |
| [25] | Ma D, Li C, Jiang P, et al. Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis[J].Dig Dis Sci,2021,66(2):483-492. |
| [26] | Brautigam CA, Wynn RM, Chuang JL, et al. Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex[J].Structure,2006,14(3):611-621. pmid:16442803 |
| [27] | Fan J, Shan C, Kang HB, et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex[J].Mol Cell,2014,53(4):534-548. doi:10.1016/j.molcel.2013.12.026pmid:24486017 |
| [28] | Wang Y, Guo YR, Liu K, et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase[J].Nature,2017,552(7684):273-277. |
| [29] | Dayan A, Fleminger G, Ashur-Fabian O. Targeting the Achilles’ heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase[J].Oncogene,2019,38(25):5050-5061. |
| [30] | Shin D, Lee J, You JH, et al. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer[J].Redox Biol,2020,30:101418. |
| [31] | Dabrowski A, Osada J, Dabrowska MI, et al. Monocyte subsets and natural killer cells in acute pancreatitis[J].Pancreatology,2008,8(2):126-134. doi:10.1159/000123605pmid:18382098 |
| [32] | Zhou Q, Tao X, Xia S, et al. T lymphocytes: a promising immunotherapeutic target for pancreatitis and pancreatic cancer?[J].Front Oncol,2020,10:382. |
| [33] | Pinhu L, Qin Y, Xiong B, et al. Overexpression of Fas and FasL is associated with infectious complications and severity of experimental severe acute pancreatitis by promoting apoptosis of lymphocytes[J].Inflammation,2014,37(4):1202-1212. doi:10.1007/s10753-014-9847-8pmid:24566874 |
| [34] | Liang W, Han C, Zhang D, et al. Copper-coordinated nanoassemblies based on photosensitizer-chemo prodrugs and checkpoint inhibitors for enhanced apoptosis-cuproptosis and immunotherapy[J].Acta Biomater,2024,175:341-352. |
| [35] | Liu T, Zhou Z, Zhang M, et al. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor[J].J Control Release,2023,362:502-512. |
| [36] | Karanikas V, Rowley MJ, MacKay IR, et al. Autoreactive cytotoxic T cells in mice are induced by immunization with a conserved mitochondrial enzyme in Freund’s complete adjuvant[J].Immunology,1999,97(2): 264-271. pmid:10447741 |
| [1] | BAO Zhujie, LI Zhen, WANG Feiliang, PANG Bo, YANG Jian.Prediction of Slip and Torsion Performance of Right-Angle Fasteners Based on Machine Learning Methods[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 242-252. |
| [2] | SUN Qianyang, ZHOU Li, DING Shifeng, LIU Renwei, DING Yi.An Artificial Neural Network-Based Method for Prediction of Ice Resistance of Polar Ships[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 156-165. |
| [3] | LI Mingai1,2,3∗ (李明爱), XU Dongqin1 (许东芹).Transfer Learning in Motor Imagery Brain Computer Interface: A Review[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
| [4] | OU Dan, CAI Gang, CHEN Jiayi.Bioinformatics analysis for expression ofRAD51AP1in triple negative breast cancer with brain metastasis[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 146-154. |
| [5] | SU Hongjia, LUO Yucheng, LIU Fei.Review of Equipment Effectiveness Evaluation and Supporting Technologies[J]. Air & Space Defense, 2023, 6(3): 29-38. |
| [6] | SUN Jie, LI Zihao, ZHANG Shuyu.Application of Machine Learning in Chemical Synthesis and Characterization[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1231-1244. |
| [7] | GAN Ezhong, LIU Yan, WANG Hairong, WANG Chengguang.Research on Comprehensive Tradeoff of Supportability Based on Machine Learning Performance Measurement Theory[J]. Air & Space Defense, 2023, 6(1): 38-44. |
| [8] | GE Yan, WANG Guoxin, WANG Jiahui, AN Yuan, ZHAO Bing, SHENG Huiqiu, MA Li.Analysis of the effect of double filtration plasmapheresis on hyperlipidemic acute pancreatitis[J]. Journal of Surgery Concepts & Practice, 2023, 28(05): 448-453. |
| [9] | XIAO Jianwei, CAI Xu, HUANG Xinmin, HONG Yiwei, WANG Rongsheng.Expression ofLINC01465in gouty arthritis and its clinical significances[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 92-98. |
| [10] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军).Machine Learning-Based Approach to Liner Shipping Schedule Design[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
| [11] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏).Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
| [12] | WANG Zhiyan, SONG Tao. Application of artificial intelligence in Cranial and Maxillofacial Surgery[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2022, 18(2): 160-. |
| [13] | JIA Dao, CHEN Lei, ZHU Zhipeng, YU Yao, CHI Dejian.Application of Machine Learning in Fuze- Warhead System Design[J]. Air & Space Defense, 2022, 5(2): 27-31. |
| [14] | WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an.Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348. |
| [15] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹).Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||