
Journal of Internal Medicine Concepts & Practice››2023,Vol. 18››Issue (06): 451-456.doi:10.16138/j.1673-6087.2023.06.014
• Review article •Previous ArticlesNext Articles
HUANG Rong1, LIU Jing’an1, ZHU Yilin1, SHI Xiaofeng2(
)
Received:2022-12-08Online:2023-12-18Published:2024-03-18CLC Number:
HUANG Rong, LIU Jing’an, ZHU Yilin, SHI Xiaofeng. The role and research progress of microRNA in acute leukemia[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(06): 451-456.
| miRNA类型 | 作用结果 | 作用方式 | 作用靶基因 | 疾病类型 | 调控的细胞类型 | 信号通路 | 参考文献 |
|---|---|---|---|---|---|---|---|
| 9 | 抑癌 | 下调 | CXCR4 | AML | Kasumi-1 | [
|
|
| 9 | 抑癌 | 下调 | AML | HL-60 | Hippo/YAP | [
|
|
| 93 | 促癌 | 上调 | DAB2 | AML | THP-1 | PI3K/AKT | [
|
| 139-5p | 抑癌 | 下调 | TSPAN3 | AML | HL-60、OCI-AML3 | PI3K/AKT | [
|
| 139-5p | 抑癌 | 下调 | MNT | APL | NB4 | [
|
|
| 20a-5p | 抑癌 | 下调 | PPP6C | AML | THP-1、U937 | [
|
|
| 451 | 抑癌 | 下调 | HMGB1 | AML | HL-60、THP-1 | [
|
|
| 29b-3p | 抑癌 | 下调 | HUR/ELAVL1 | AML | K562、U937 | NF-κB和JAK/STAT | [
|
| 504-3p | 抑癌 | 下调 | MTHFD2 | AML | HL-60、THP-1 | [
|
|
| 4792 | 抑癌 | 下调 | KINDLIN3 | AML | HL-60、Kg1a | [
|
|
| 204 | 抑癌 | 下调 | HGF | AML | Kasumi-1、HL-60 | HGF/c-Met | [
|
| 182-5p | 促癌 | 上调 | BCL2L12 | AML | AML5、Kasumi-1 | [
|
|
| 362-5p | 促癌 | 上调 | GAS7 | AML | THP-1、HL-60 | [
|
|
| 10b | 促癌 | 上调 | HOXD10 | AML | HL-60 | [
|
|
| 582-3p | 抑癌 | 下调 | CCNB2 | AML | THP-1 | [
|
|
| 335-3p | 抑癌 | 下调 | EIF3E | AML | THP-1、U937 | [
|
|
| 1306-5p | 促癌 | 上调 | PHF6 | AML | HL-60、K562 | [
|
|
| 148a-3p | 抑癌 | 下调 | CDK6 | AML | J111、KG-1a | [
|
|
| 1271-5p | 抑癌 | 下调 | ZIC2 | AML | AML193、OCI-AML2 | [
|
|
| 550-1 | 抑癌 | 下调 | WWTR1 | AML | MV4-11、Kasumi-1 | [
|
|
| 155 | 促癌 | 上调 | ZNF238 | ALL | CEM-C1、Jurkat、MOLT-3、MOLT-4 | [
|
|
| 342 | 抑癌 | 下调 | Naa10p | AML | Kg1a、HL60 | [
|
|
| 223 | 抑癌 | 下调 | FOXO1 | ALL | CCRF-CEM、NALM-6 | [
|
| miRNA类型 | 对药物敏感性的影响 | 影响的药物 | 疾病类型 | 调控的细胞类型 | 调控的靶基因 | 信号通路 | 参考文献 |
|---|---|---|---|---|---|---|---|
| 9 |
过表达后增强 |
柔红霉素 |
AML |
THP-1、KG-1、 HL60、Kasumi-1 |
EIF5A2 |
EIF5A2/MCL-1 |
[
|
| 33b |
过表达后增强 |
柔红霉素 |
AML |
THP-1、KG-1、 Kasumi-1、HL-60 |
EIF5A2 |
EIF5A2/MCL-1 |
[
|
| 15a-5p |
过表达后抑制 |
柔红霉素 |
AML |
K562 |
ATG9A、ATG14、 GABARAPL1、SMPD1 |
[
|
|
| 15a-5p、21-5p |
过表达后抑制 |
阿糖胞甘、柔红霉素 | AML |
K562、OCI-AML3 |
PDCD4、ARL2、BTG2 |
[
|
|
| 199a-5p | 过表达后增强 | 多柔比星 | AML | K562 | DRAM1 | DRAM1/自噬轴 | [
|
| 146a、155、181a | 沉默后增强 | 泼尼松龙 | ALL | SUP-B15 | [
|
||
| 130a | 沉默后增强 | 多柔比星 | AML | HL-60 | [
|
||
| let-7f | 过表达后增强 | 多柔比星 | AML | K562、K562/A02 | ABCC5、ABCC10 | [
|
|
| 145 | 过表达后增强 | 地塞米松 | ALL | CEM-C1 | [
|
| [1] | Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) Co-operative Group[J].Br J Haematol,1976,33(4): 451-458. doi:10.1111/bjh.1976.33.issue-4URL |
| [2] | Yamashita M, Dellorusso PV, Olson OC, et al. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis[J].Nat Rev Cancer,2020,20(7): 365-382. doi:10.1038/s41568-020-0260-3pmid:32415283 |
| [3] | Zhang Y, Zhou SY, Yan HZ, et al. miR-203 inhibits proliferation and self-renewal of leukemia stem cells by targeting survivin and Bmi-1[J].Sci Rep,2016,6: 19995. doi:10.1038/srep19995pmid:26847520 |
| [4] | Krivdova G, Voisin V, Schoof EM, et al. Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML[J].Cell Rep,2022,38(10): 110481. |
| [5] | Zhang L, Nguyen LXT, Chen YC, et al. Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance[J].Nat Commun,2021,12(1): 6154. doi:10.1038/s41467-021-26420-7pmid:34686664 |
| [6] | Zhu B, Zhong W, Cao X, et al. Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice[J].Sci Transl Med,2022,14(629): eabh2548. |
| [7] | Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia[J].Proc Natl Acad Sci U S A,2007,104(50): 19971-19976. doi:10.1073/pnas.0709313104URL |
| [8] | Zhu B, Xi X, Liu Q, et al. MiR-9 functions as a tumor suppressor in acute myeloid leukemia by targeting CX chemokine receptor 4[J].Am J Transl Res,2019,11(6):3384-3397. pmid:31312352 |
| [9] | Wang G, Yu X, Xia J, et al. MicroRNA-9 restrains the sharp increase and boost apoptosis of human acute myeloid leukemia cells by adjusting the Hippo/YAP signaling pathway[J].Bioengineered,2021,12(1): 2906-2914. doi:10.1080/21655979.2021.1915727pmid:34167441 |
| [10] | Huang J, Xiao R, Wang X, et al. MicroRNA-93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2[J].Int J Oncol,2021,59(4): 81. doi:10.3892/ijoURL |
| [11] | Zhang R, Tang P, Wang F, et al. Tumor suppressor miR-139-5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway[J].J Cell Biochem,2019,120(3): 4423-4432. doi:10.1002/jcb.27728pmid:30367526 |
| [12] | Fu Y, Li L, Hou J, et al. miR-139-5p regulates the proliferation of acute promyelocytic leukemia cells by targeting MNT[J].J Oncol,2021,2021: 5522051. |
| [13] | Bao F, Zhang L, Pei X, et al. MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia[J].PLoS One,2021,16(9): e0256995. |
| [14] | Zhang Y, Chu X, Wei Q. MiR-451 promotes cell apoptosis and inhibits autophagy in pediatric acute myeloid leukemia by targeting HMGB1[J].J Environ Pathol Toxicol Oncol,2021,40(2): 45-53. doi:10.1615/JEnvironPatholToxicolOncol.2021037139pmid:33822516 |
| [15] | Tang YJ, Wu W, Chen QQ, et al. miR-29b-3p suppresses the malignant biological behaviors of AML cells via inhibiting NF-κB and JAK/STAT signaling pathways by targeting HuR[J].BMC Cancer,2022,22(1): 909. doi:10.1186/s12885-022-09996-1 |
| [16] | Li SM, Zhao YQ, Hao YL, et al. Upregulation of miR-504-3p is associated with favorable prognosis of acute myeloid leukemia and may serve as a tumor suppressor by targeting MTHFD2[J].Eur Rev Med Pharmacol Sci,2019,23(3): 1203-1213. |
| [17] | Qin Y, Wang Y, Liu D. miR-4792 inhibits acute myeloid leukemia cell proliferation and invasion and promotes cell apoptosis by targeting Kindlin-3[J].Oncol Res,2020,28(4): 357-369. doi:10.3727/096504020X15844389264424pmid:32183929 |
| [18] | Wang Z, Luo H, Fang Z, et al. MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis[J].BMB Rep,2018,51(9): 444-449. pmid:29764561 |
| [19] | Zhang S, Zhang Q, Shi G, et al. MiR-182-5p regulates BCL2L12 and BCL2 expression in acute myeloid leukemia as a potential therapeutic target[J].Biomed Pharmacother,2018,97: 1189-1194. doi:S0753-3322(17)32015-2pmid:29136958 |
| [20] | Wu F, Yin C, Qi J, et al. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia[J].Hum Cell,2020,33(2): 405-415. doi:10.1007/s13577-019-00319-4pmid:31925702 |
| [21] | Wang CJ, Zou H, Feng GF. MiR-10b regulates the proli-feration and apoptosis of pediatric acute myeloid leukemia through targeting HOXD10[J].Eur Rev Med Pharmacol Sci,2018,22(21): 7371-7378. |
| [22] | Li H, Tian X, Wang P, et al. MicroRNA-582-3p negatively regulates cell proliferation and cell cycle progression in acute myeloid leukemia by targeting cyclin B2[J].Cell Mol Biol Lett,2019,24: 66. doi:10.1186/s11658-019-0184-7pmid:31844417 |
| [23] | Zhang L, Wang X, Wu J, et al. MiR-335-3p inhibits cell proliferation and induces cell cycle arrest and apoptosis in acute myeloid leukemia by targeting EIF3E[J].Biosci Biotechnol Biochem,2021,85(9): 1953-1961. doi:10.1093/bbb/zbab116URL |
| [24] | Gao X, Fan S, Zhang X. MiR-1306-5p promotes cell proliferation and inhibits cell apoptosis in acute myeloid leukemia by downregulating PHF6 expression[J].Leuk Res,2022,120: 106906. doi:10.1016/j.leukres.2022.106906URL |
| [25] | Zhou H, Jia X, Yang F, et al. miR-148a-3p suppresses the progression of acute myeloid leukemia via targeting cyclin-dependent kinase 6(CDK6)[J].Bioengineered,2021,12(1): 4508-4519. doi:10.1080/21655979.2021.1956400URL |
| [26] | Chen X, Yang S, Zeng J, et al. miR-1271-5p inhibits cell proliferation and induces apoptosis in acute myeloid leukemia by targeting ZIC2[J].Mol Med Rep,2019,19(1): 508-514. |
| [27] | Hu C, Yu M, Li C, et al. miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway[J].Int J Biol Sci,2020,16(15): 2853-2867. doi:10.7150/ijbs.44365pmid:33061801 |
| [28] | Liang C, Li Y, Wang LN, et al. Up-regulated miR-155 is associated with poor prognosis in childhood acute lymphoblastic leukemia and promotes cell proliferation targeting ZNF238[J].Hematology,2021,26(1): 16-25. doi:10.1080/16078454.2020.1860187pmid:33357126 |
| [29] | Wang H, He H, Yang C. miR-342 suppresses the pro-liferation and invasion of acute myeloid leukemia by targeting Naa10p[J].Artif Cells Nanomed Biotechnol,2019,47(1): 3671-3676. doi:10.1080/21691401.2019.1596930URL |
| [30] | Li C, Zhao T, Nie L, et al. MicroRNA-223 decreases cell proliferation, migration, invasion, and enhances cell apoptosis in childhood acute lymphoblastic leukemia via targeting Forkhead box O 1[J].Biosci Rep,2020,40(10):BSR20200485. |
| [31] | Almeida RS, Costa E Silva M, Coutinho LL, et al. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia[J].Hematol Oncol,2019,37(1):103-112. doi:10.1002/hon.2567pmid:30393877 |
| [32] | Mansouri S, Khansarinejad B, Mosayebi G, et al. Alteration in expression of miR-32 and FBXW7 tumor suppressor in plasma samples of patients with T-cell acute lymphoblastic leukemia[J].Cancer Manag Res,2020,12:1253-1259. doi:10.2147/CMAR.S238470pmid:32110099 |
| [33] | Zamani A, Fattahi Dolatabadi N, Houshmand M, et al. miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia[J].Leuk Res,2021,109: 106643. doi:10.1016/j.leukres.2021.106643URL |
| [34] | Shahid S, Shahid W, Shaheen J, et al. Circulating miR-146a expression as a non-invasive predictive biomarker for acute lymphoblastic leukemia[J].Sci Rep,2021,11(1): 22783. |
| [35] | Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA[J].Nucleic Acids Res,2011,39(16): 7223-7233. doi:10.1093/nar/gkr254pmid:21609964 |
| [36] | Zhang B, Pei Z, Wang H, et al. Clinical value of serum miRNA in patients with acute promyelocytic leukemia[J].J Oncol,2022,2022: 7315879. |
| [37] | Cao Y, Liu Y, Shang L, et al. Overexpression of miR-17 predicts adverse prognosis and disease recurrence for acute myeloid leukemia[J].Int J Clin Oncol,2022,27(7): 1222-1232. doi:10.1007/s10147-022-02161-5pmid:35536524 |
| [38] | Yu AM, Tu MJ. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination[J].Pharmacol Ther,2022,230: 107967. doi:10.1016/j.pharmthera.2021.107967URL |
| [39] | Yu AM, Choi YH, Tu MJ. RNA drugs and RNA targets for small molecules: principles, progress, and challenges[J].Pharmacol Rev,2020,72(4): 862-898. doi:10.1124/pr.120.019554URL |
| [40] | Seto AG, Beatty X, Lynch JM, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proli-feration and survival in cutaneous T-cell lymphoma[J].Br J Haematol,2018,183(3): 428-444. doi:10.1111/bjh.2018.183.issue-3URL |
| [41] | Vu TT, Stölzel F, Wang KW, et al. miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia[J].Leukemia,2021,35(7): 1933-1948. doi:10.1038/s41375-020-01095-zpmid:33262524 |
| [42] | Durmaz B, Bagca BG, Cogulu O, et al. Antileukemic effects of anti-miR-146a, anti-miR-155, anti-miR-181a, and prednisolone on childhood acute lymphoblastic leukemia[J].Biomed Res Int,2021,2021: 3207328. |
| [43] | Zhang H, Kang J, Liu L, et al. MicroRNA-143 sensitizes acute myeloid leukemia cells to cytarabine via targeting ATG7- and ATG2B-dependent autophagy[J].Aging (Albany NY),2020,12(20): 20111-20126. |
| [44] | Wang Z, Fang Z, Lu R, et al. MicroRNA-204 potentiates the sensitivity of acute myeloid leukemia cells to arsenic trioxide[J].Oncol Res,2019,27(9): 1035-1042. doi:10.3727/096504019X15528367532612pmid:30982490 |
| [45] | Liu Y, Lei P, Qiao H, et al. miR-9 enhances the chemosensitivity of AML cells to daunorubicin by targeting the EIF5A2/MCL-1 axis[J].Int J Biol Sci,2019,15(3): 579-586. doi:10.7150/ijbs.29775pmid:30745844 |
| [46] | Liu Y, Lei P, Qiao H, et al. MicroRNA-33b regulates sensitivity to daunorubicin in acute myelocytic leukemia by regulating eukaryotic translation initiation factor 5A-2[J].J Cell Biochem,2020,121(1): 385-393. doi:10.1002/jcb.29192pmid:31222822 |
| [47] | Bollaert E, Claus M, Vandewalle V, et al. MiR-15a-5p confers chemoresistance in acute myeloid leukemia by inhibiting autophagy induced by daunorubicin[J].Int J Mol Sci,2021,22(10): 5153. doi:10.3390/ijms22105153URL |
| [48] | Vandewalle V, Essaghir A, Bollaert E, et al. miR-15a-5p and miR-21-5p contribute to chemoresistance in cytogenetically normal acute myeloid leukaemia by targeting PDCD4, ARL2 and BTG2[J].J Cell Mol Med,2021,25(1): 575-585. doi:10.1111/jcmm.16110pmid:33270982 |
| [49] | Li Y, Zhang G, Wu B, et al. miR-199a-5p represses protective autophagy and overcomes chemoresistance by directly targeting DRAM1 in acute myeloid leukemia[J].J Oncol,2019,2019: 5613417. |
| [50] | Liu H, Liu M, Zhang J, et al. Downregulated miR-130a enhances the sensitivity of acute myeloid leukemia cells to Adriamycin[J].Mol Med Rep,2020,22(4): 2810-2816. |
| [51] | Cao YX, Wen F, Luo ZY, et al. Downregulation of microRNA let-7f mediated the Adriamycin resistance in leukemia cell line[J].J Cell Biochem,2020,121(10): 4022-4033. doi:10.1002/jcb.v121.10URL |
| [52] | Long S, Ren D, Zhong F, et al. Reversal of glucocorticoid resistance in acute lymphoblastic leukemia cells by miR-145[J].PeerJ,2020,8: e9337. doi:10.7717/peerj.9337URL |
| [53] | Su YL, Wang X, Mann M, et al. Myeloid cell-targeted miR-146a mimic inhibits NF-κB-driven inflammation and leukemia progressionin vivo[J].Blood,2020,135(3): 167-180. doi:10.1182/blood.2019002045URL |
| [1] | WEI Yihong, MA Zilin, ZHOU Duan, DENG Bing, TANG Jingyi.Analysis of influence factors on nucleic acid negative conversion time in SARS-CoV-2 Omicron infected patients over 60 years old[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(06): 377-382. |
| [2] | ZHAO Yajie, HE Qing, XU Zhihong.Impact of sarcopenia on quality of life and mobility in elderly patients with chronic obstructive pulmonary disease[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(06): 383-387. |
| [3] | LU Hao, XI Huimin, LI Lu, CAI Xun.Low-dose sorafenib combined with all-trans retinoic acid induces differentiation of acute myeloid leukemia cells with wild type Fms like tyrosine kinase 3[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 428-434. |
| [4] | REN Jiayi, MI Jianqing.Progress of novel antibody-like drugs in treatment of acute B lymphoblastic leukemia[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 463-467. |
| [5] | GAO Caihong.Analysis of therapeutic efficacy of simplified diagnosis and treatment for outpatients with acute mild ischemic stroke in designated hospitals during the COVID-19 pandemic[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 385-389. |
| [6] | JIANG Tianyi, LIU Fujia, CHENG Wenyan, ZHAO Huijin, SHEN Yang.Recombinant human thrombopoietin in treatment of acute myeloid leukemia thrombocytopenia after chemotherapy: a real-world study[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 283-288. |
| [7] | .[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 353-355. |
| [8] | LUO Dongfeng, YOU Jianhua, LI Xiaoyang, LI Junmin, ZHANG Yunxiang.Study on the efficacy and safety of different induction therapies in newly diagnosed elderly patients with acute myeloid leukemia and intolerance of intensive chemotherapy[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 220-226. |
| [9] | .[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 253-255. |
| [10] | .[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(04): 282-286. |
| [11] | HUANG Lei, YE Chenjing, WU Chao, XU Wenbin, YU Qing, LI Junmin, YAN Hua.Clinical observation of the combination therapy of azacitidine and venetoclax in newly diagnosed, elderly patients with acute myeloid leukemia[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(03): 178-182. |
| [12] | .[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 131-133. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||