
Journal of Internal Medicine Concepts & Practice››2023,Vol. 18››Issue (03): 201-205.doi:10.16138/j.1673-6087.2023.03.014
• Review article •Previous ArticlesNext Articles
Received:2023-01-13Online:2023-06-30Published:2023-08-07CLC Number:
BI Liming, WANG Zhaohui. Research progress on pathogenesis of diabetic nephropathy[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 201-205.
| [1] | Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15. doi:10.1111/dom.14007pmid:32267079 |
| [2] | Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9): 905-906. doi:10.1056/NEJMc1602469URL |
| [3] | Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15. doi:10.1111/dom.14007pmid:32267079 |
| [4] | Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy[J]. World J Diabetes, 2019, 10(5): 269-279. doi:10.4239/wjd.v10.i5.269pmid:31139314 |
| [5] | Xiong Y, Zhou L. The signaling of cellular senescence in diabetic nephropathy[J]. Oxid Med Cell Longev, 2019, 2019:7495629. |
| [6] | Sugahara M, Pak WLW, Tanaka T, et al. Update on diagnosis, pathophysiology, and management of diabetic kidney disease[J]. Nephrology (Carlton), 2021, 26(6): 491-500. doi:10.1111/nep.v26.6URL |
| [7] | Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction[J]. Bull Exp Biol Med, 2021, 171(2): 179-189. doi:10.1007/s10517-021-05191-7 |
| [8] | Thallas-Bonke V, Thorpe SR, Coughlan MT, et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway[J]. Diabetes, 2008, 57(2):460-469. doi:10.2337/db07-1119pmid:17959934 |
| [9] | Pavlov TS, Palygin O, Isaeva E, et al. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease[J]. FASEB J, 2020, 34(10): 13396-13408. doi:10.1096/fsb2.v34.10URL |
| [10] | Duni A, Liakopoulos V, Roumeliotis S, et al. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread[J]. Int J Mol Sci, 2019, 20(15): 3711. doi:10.3390/ijms20153711URL |
| [11] | Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70(6): 809-824. doi:10.26402/jpp.2019.6.01 |
| [12] | Yang J, Liu Z. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy[J]. Front Endocrinol (Lausanne), 2022, 13: 816400. doi:10.3389/fendo.2022.816400URL |
| [13] | Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822. doi:10.3390/ijms221910822URL |
| [14] | Wang L, Wang HL, Liu TT, et al. TGF-beta as a master regulator of diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(15): 7881. doi:10.3390/ijms22157881URL |
| [15] | Hernandez LF, Eguchi N, Whaley D, et al. Anti-oxidative therapy in diabetic nephropathy[J]. Front Biosci (Schol Ed), 2022, 14(2): 14. doi:10.31083/j.fbs1402014pmid:35730439 |
| [16] | Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: basic and clinical aspects—a general perspective[J]. Endocrinol Diabetes Nutr (Engl Ed), 2022, 69(1): 52-62. |
| [17] | Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease[J]. J Formos Med Assoc, 2018, 117(8): 662-675. doi:10.1016/j.jfma.2018.02.007URL |
| [18] | Patel DM, Bose M, Cooper ME. Glucose and blood pressure-dependent pathways—the progression of diabetic kidney disease[J]. Int J Mol Sci, 2020, 21(6): 2218. doi:10.3390/ijms21062218URL |
| [19] | Tung CW, Hsu YC, Shih YH, et al. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy[J]. Nephrology (Carlton), 2018, 23 Suppl 4: 32-37. |
| [20] | Nomura H, Kuruppu S, Rajapakse NW. Stimulation of angiotensin converting enzyme 2: a novel treatment strategy for diabetic nephropathy[J]. Front Physiol, 2022, 12: 813012. doi:10.3389/fphys.2021.813012URL |
| [21] | Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension[J]. Steroids, 2020, 163: 108701. doi:10.1016/j.steroids.2020.108701URL |
| [22] | Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins Ⅰ and Ⅱ in anesthetized rats[J]. Hypertension, 2002, 39(1): 129-134. doi:10.1161/hy0102.100536pmid:11799091 |
| [23] | Singh R, Singh AK, Alavi N, et al. Mechanism of increased angiotensin Ⅱ levels in glomerular mesangial cells cultured in high glucose[J]. J Am Soc Nephrol, 2003, 14(4): 873-880. doi:10.1097/01.ASN.0000060804.40201.6EURL |
| [24] | Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis, 2018, 71(6): 884-895. doi:S0272-6386(17)31102-2pmid:29398179 |
| [25] | Jung SW, Moon JY. The role of inflammation in diabetic kidney disease[J]. Korean J Intern Med, 2021, 36(4): 753-766. doi:10.3904/kjim.2021.174pmid:34237822 |
| [26] | Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-16. doi:10.1159/000493278URL |
| [27] | Pichler R, Afkarian M, Dieter BP, et al. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets[J]. Am J Physiol Renal Physiol, 2017, 312(4): F716-F731. doi:10.1152/ajprenal.00314.2016URL |
| [28] | Suzuki D, Miyazaki M, Naka R, et al. In situ hybridization of interleukin 6 in diabetic nephropathy[J]. Diabetes, 1995, 44(10): 1233-1238. doi:10.2337/diab.44.10.1233pmid:7556963 |
| [29] | Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806. doi:10.3390/ijms21082806URL |
| [30] | Pickup JC, Chusney GD, Thomas SM, et al. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes[J]. Life Sci, 2000, 67(3): 291-300. doi:10.1016/s0024-3205(00)00622-6pmid:10983873 |
| [31] | Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806. doi:10.3390/ijms21082806URL |
| [32] | Liu Y. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12): 684-696. doi:10.1038/nrneph.2011.149pmid:22009250 |
| [33] | Tanase DM, Gosav EM, Anton MI, et al. Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney di-sease (DKD): new perspectives[J]. Biomolecules, 2022, 12(9): 1227. doi:10.3390/biom12091227URL |
| [34] | Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy[J]. Nat Rev Nephrol, 2011, 7(6): 327-340. doi:10.1038/nrneph.2011.51pmid:21537349 |
| [35] | Tan SM, de Haan JB. Combating oxidative stress in diabetic complications with Nrf 2 activators: how much is too much?[J]. Redox Rep, 2014, 19(3):107-117. doi:10.1179/1351000214Y.0000000087URL |
| [36] | Hofni A, Ali FEM, Ibrahim ARN, et al. Renoprotective effect of thymoquinone against streptozotocin-induced diabetic nephropathy: role of NOX2 and Nrf2 signals[J]. Curr Mol Pharmacol, 2023, 16(8): 905-914. |
| [37] | Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice[J]. Diabetes, 2004, 53(8): 2101-2109. pmid:15277392 |
| [38] | Cheng YS, Chao J, Chen C, et al. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy[J]. J Pharm Pharmacol, 2019, 71(3): 338-347. doi:10.1111/jphp.13043URL |
| [39] | Ohshiro Y, Ma RC, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expres-sion, and renal dysfunction in protein kinase Cβ-null mice[J]. Diabetes, 2006, 55(11): 3112-3120. doi:10.2337/db06-0895pmid:17065350 |
| [40] | Xu J, Wang Y, Wang Z, et al. Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF-κB signaling pathway:in vitroandin vivoinvestigations[J]. Phytother Res, 2021, 35(4): 2133-2144. |
| [41] | Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2):119. doi:10.1038/s41419-017-0135-zpmid:29371661 |
| [42] | Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20(7):1126-1167. doi:10.1089/ars.2012.5149URL |
| [43] | Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxid Med Cell Longev, 2016, 2016: 5698931. |
| [44] | Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822. doi:10.3390/ijms221910822URL |
| [45] | Cheng D, Liang R, Huang B, et al. Tumor necrosis factor-α blockade ameliorates diabetic nephropathy in rats[J]. Clin Kidney J, 2019, 14(1): 301-308. doi:10.1093/ckj/sfz137URL |
| [46] | 徐欢, 王伟铭. 延缓糖尿病肾病进展的措施[J]. 上海医学, 2020, 43(9): 575-580. |
| [1] | WANG Weiming.Interpretation of Chinese expert consensus on understanding and management of renal anemia in diabetic kidney disease[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 137-140. |
| [2] | GAO Yulian, FENG Yun, NI Lei.Research progress of drug-resistant gram-negative bacteria bloodstream infection in diabetic population[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 124-127. |
| [3] | ZHANG Mengxiao, SUN Shuoshuo, WEI Xiao, ZHANG Shaohong, CHEN Guofang, LIU Chao.Ketogenic diet promotes hepatic lipid accumulation in db/db mice[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(01): 56-63. |
| [4] | MIAO Ya, LIU Lili, HOU Tianzhichao, YAN Qinghua, PANG Yi, WU Chunxiao, CHENG Minna, SHI Yan, LI Yanyun, TIAN Jingyan.Risk analysis of malignant tumor incidence in pre-diabetes patients in Shanghai[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 435-440. |
| [5] | RUAN Ming, HOU Tianzhichao, WANG Haiyan, et al.Geometric deep learning and computational medicine research prospects of “preventing disease” in pre diabete[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 475-481. |
| [6] | LU Lin, DAI Yang, WANG Xiaoqun, et al.Several advances of translational research in cardiovascular diseases[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(05): 369-372. |
| [7] | .[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 349-352. |
| [8] | XU Qing, SHAO Huiying, CHEN Shuai, QUAN Jinwei, ZHOU Qingfen, WANG Minhui.The tele-nursing education and guidance ameliorate coronary plaque progression in patients with type 2 diabetes mellitus[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 330-333. |
| [9] | .[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 344-348. |
| [10] | .[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(06): 373-375. |
| [11] | .[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(06): 376-380. |
| [12] | SUN Yan, DAI Danjiao, CHEN Zhiwei, ZHANG Huaqing.Effect of canagliflozin on urinary albumin / creatinine ratio and urinary podocyte-associated protein nephrin in patients with early diabetic kidney disease[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(06): 387-391. |
| [13] | .[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(06): 418-421. |
| [14] | .[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(06): 422-426. |
| [15] | .[J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 129-130. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||
