| [1] |
Medinger M, Passweg JR. Acute myeloid leukaemia genomics[J]. Br J Haematol, 2017, 179(4): 530-542. doi:10.1111/bjh.14823URL |
| [2] |
Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia[J]. N Engl J Med, 2015, 373(12): 1136-1152. doi:10.1056/NEJMra1406184URL |
| [3] |
Ferrara F, Vitagliano O. Induction therapy in acute myeloid leukemia: is it time to put aside standard 3+7?[J]. Hematol Oncol, 2019, 37(5):558-563. |
| [4] |
Tallman MS. Differentiating therapy in acute myeloid leukemia[J]. Leukemia, 1996, 1010(8):1262-1268. |
| [5] |
Gong L, Giacomini MM, Giacomini C, et al. PharmGKB summary: sorafenib pathways[J]. Pharmacogenet Genomics, 2017, 27(6): 240-246. doi:10.1097/FPC.0000000000000279URL |
| [6] |
Antar A, Otrock ZK, El-Cheikh J, et al. Inhibition of FLT3 in AML: a focus on sorafenib[J]. Bone Marrow Transplant, 2017, 52(3): 344-351. doi:10.1038/bmt.2016.251URL |
| [7] |
Mori S, Cortes J, Kantarjian H, et al. Potential role of sorafenib in the treatment of acute myeloid leukemia[J]. Leuk Lymphoma, 2008, 49(12): 2246-2255. doi:10.1080/10428190802510349URL |
| [8] |
Yalniz F, Abou Dalle I, Kantarjian H, et al. Prognostic significance of baseline FLT3-ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib[J]. Am J Hematol, 2019, 94(9): 984-991. doi:10.1002/ajh.25553pmid:31237017 |
| [9] |
Battipaglia G, Massoud R, Ahmed SO, et al. Efficacy and feasibility of sorafenib as a maintenance agent after allogeneic hematopoietic stem cell transplantation for Fms-like tyrosine kinase 3 mutated acute myeloid leukemia[J]. Clin Lymphoma Myeloma Leuk, 2019, 19(8): 506-508. doi:S2152-2650(19)30109-0pmid:31122828 |
| [10] |
Roolf C, Dybowski N, Sekora A, et al. Phosphoproteome analysis reveals differential mode of action of sorafenib in wildtype and mutated FLT3 acute myeloid leukemia (AML) cells[J]. Mol Cell Proteomics, 2017, 16(7): 1365-1376. doi:10.1074/mcp.M117.067462pmid:28450419 |
| [11] |
Fouladi F, Jehn LB, Metzelder SK, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation[J]. Leuk Lymphoma, 2015, 56(9): 2690-2698. doi:10.3109/10428194.2014.1003055URL |
| [12] |
Poulikakos PI, Zhang C, Bollag G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF[J]. Nature, 2010, 464(7287): 427-430. doi:10.1038/nature08902URL |
| [13] |
Miranda MB, Xu H, Torchia JA, et al. Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway[J]. Leuk Res, 2005, 29(11): 1293-306. doi:10.1016/j.leukres.2005.03.016URL |
| [14] |
Yen A, Roberson MS, Varvayanis S, et al. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest[J]. Cancer Res, 1998, 58(14): 3163-3172. pmid:9679985 |
| [15] |
Wang R, Xia L, Gabrilove J, et al. Sorafenib inhibition of Mcl-1 accelerates ATRA-induced apoptosis in differentiation-responsive AML cells[J]. Clin Cancer Res, 2016, 22(5): 1211-1221. doi:10.1158/1078-0432.CCR-15-0663pmid:26459180 |
| [16] |
Ma HS, Greenblatt SM, Shirley CM, et al. All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+leukemia stem cellsin vitroandin vivo[J]. Blood, 2016, 127(23): 2867-2878. doi:10.1182/blood-2015-05-646786URL |
| [17] |
Röllig C, Serve H, Noppeney R, et al. Sorafenib or placebo in patients with newly diagnosed acute myeloid leukaemia: long-term follow-up of the randomized controlled SORAML trial[J]. Leukemia, 2021, 35(9): 2517-2525. doi:10.1038/s41375-021-01148-xpmid:33603142 |
| [18] |
Strumberg D, Richly H, Hilger RA, et al. Phase Ⅰ clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors[J]. J Clin Oncol, 2005, 23(5): 965-972. doi:10.1200/JCO.2005.06.124pmid:15613696 |
| [19] |
Miranda MB, Johnson DE. Signal transduction pathways that contribute to myeloid differentiation[J]. Leukemia, 2007, 21(7): 1363-1377. doi:10.1038/sj.leu.2404690pmid:17443228 |
| [20] |
Li ZY, Liang C, Ding M, et al. Enzastaurin enhances ATRA-induced differentiation of acute myeloid leukemia cells[J]. Am J Transl Res, 2020, 12(12): 7836-7854. |
| [21] |
Lee S, Shuman JD, Guszczynski T, et al. RSK-mediated phosphorylation in the C/EBPβ leucine zipper regulates DNA binding, dimerization, and growth arrest activity[J]. Mol Cell Biol, 2010, 30(11): 2621-2635. doi:10.1128/MCB.00782-09URL |
| [22] |
Lu J, Wu DM, Zheng YL, et al. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress[J]. J Immunol, 2013, 190(7), 3466-3479. doi:10.4049/jimmunol.1202862pmid:23420885 |
| [23] |
Murakami M, Ito H, Hagiwara K, et al. Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription[J]. J Cell Biochem, 2011, 112(11): 3449-3458. doi:10.1002/jcb.23275pmid:21769916 |
| [24] |
Yoshida H, Ichikawa H, Tagata Y, et al. PML-retinoic acid receptor alpha inhibits PML Ⅳ enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation[J]. Mol Cell Biol, 2007, 27(16): 5819-5834. doi:10.1128/MCB.02422-06URL |
| [25] |
Mueller BU, Pabst T, Fos J, et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression[J]. Blood, 2006, 107(8): 3330-3338. doi:10.1182/blood-2005-07-3068pmid:16352814 |