
内科理论与实践››2022,Vol. 17››Issue (03): 262-266.doi:10.16138/j.1673-6087.2022.03.018
收稿日期:2021-12-22出版日期:2022-05-30发布日期:2022-08-09通讯作者:姜林娣 E-mail:jiang.lindi@zs.hospital.sh.cn
Received:2021-12-22Online:2022-05-30Published:2022-08-09| [1] | Watts RA, Hatemi G, Burns JC, et al. Global epidemiology of vasculitis[J]. Nat Rev Rheumatol, 2021, 18(1): 22-34. doi:10.1038/s41584-021-00718-8URL |
| [2] | Sun Y, Yin MM, Ma LL, et al. Epidemiology of Takayasu arteritis in Shanghai: a hospital-based study and systematic review[J]. Int J Rheum Dis, 2021, 24(10): 1247-1256. doi:10.1111/1756-185X.14183URL |
| [3] | Hirsch MS, Aikat BK, Basu AK. Takayasu’s arteritis[J]. Bull Johns Hopkins Hosp, 1964, 115: 29-64. |
| [4] | Naito S, Arakawa K, Saito S, et al. Takayasu’s disease: association with HLA-B5[J]. Tissue Antigens, 1978, 12(2): 143-145. pmid:30183 |
| [5] | Terao C, Yoshifuji H, Matsumura T, et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis[J]. Proc Natl Acad Sci U S A, 2018, 115(51): 13045-13050. doi:10.1073/pnas.1808850115URL |
| [6] | Yajima M, Numano F, Park YB, et al. Comparative studies of patients with Takayasu arteritis in Japan, Korea and India-comparison of clinical manifestations, angiography and HLA-B antigen[J]. Jpn Circ J, 1994, 58(1): 9-14. pmid:7908064 |
| [7] | Vargas-Alarcón G, Hernández-Pacheco G, Soto ME, et al. Comparative study of the residues 63 and 67 on the HLA-B molecule in patients with Takayasu’s arteritis[J]. Immunol Lett, 2005, 96(2): 225-229. pmid:15585327 |
| [8] | Yoshida M, Kimura A, Katsuragi K, et al. DNA typing of HLA-B gene in Takayasu’s arteritis[J]. Tissue Antigens, 1993, 42(2): 87-90. pmid:7903491 |
| [9] | Kitamura H, Kobayashi Y, Kimura A, et al. Association of clinical manifestations with HLA-B alleles in Takayasu arteritis[J]. Int J Cardiol, 1998, 66 Suppl 1: S121-S126. doi:10.1016/s0167-5273(98)00159-4pmid:9951811 |
| [10] | Saruhan-Direskeneli G, Hughes T, Aksu K, et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis[J]. Am J Hum Genet, 2013, 93(2): 298-305. doi:10.1016/j.ajhg.2013.05.026pmid:23830517 |
| [11] | Terao C, Yoshifuji H, Kimura A, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population[J]. Am J Hum Genet, 2013, 93(2): 289-297. doi:10.1016/j.ajhg.2013.05.024URL |
| [12] | Terao C, Yoshifuji H, Kimura A, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population[J]. Am J Hum Genet, 2013, 93(2): 289-297. doi:10.1016/j.ajhg.2013.05.024URL |
| [13] | Renauer PA, Saruhan-Direskeneli G, Coit P, et al. Identification of susceptibility loci in IL6, RPS9/LILRB3, and an intergenic locus on chromosome 21q22 in Takayasu arteritis in a genome-wide association study[J]. Arthritis Rheumatol, 2015, 67(5): 1361-1368. doi:10.1002/art.39035URL |
| [14] | Kong X, Sun Y, Ma L, et al. The critical role of IL-6 in the pathogenesis of Takayasu arteritis[J]. Clin Exp Rheumatol, 2016, 34(3 Suppl 97): S21-S27. |
| [15] | Kong X, Sawalha AH. Takayasu arteritis risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex[J]. Ann Rheum Dis, 2019, 78(10): 1388-1397. doi:10.1136/annrheumdis-2019-215567URL |
| [16] | Ripoll VM, Irvine KM, Ravasi T, et al. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses[J]. J Immunol, 2007, 178(10): 6557-6566. doi:10.4049/jimmunol.178.10.6557pmid:17475886 |
| [17] | Ortiz-Fernández L, Saruhan-Direskeneli G, Alibaz-Oner F, et al. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study[J]. Am J Hum Genet, 2021, 108(1): 84-99. doi:10.1016/j.ajhg.2020.11.014pmid:33308445 |
| [18] | Berti A, Dejaco C. Update on the epidemiology, risk factors, and outcomes of systemic vasculitides[J]. Best Pract Res Clin Rheumatol, 2018, 32(2): 271-294. doi:10.1016/j.berh.2018.09.001URL |
| [19] | Pedreira ALS, Santiago MB. Association between Takayasu arteritis and latent or active mycobacterium tuberculosis infection: a systematic review[J]. Clin Rheumatol, 2020, 39(4): 1019-1026. doi:10.1007/s10067-019-04818-5pmid:31729680 |
| [20] | Zhang Y, Fan P, Luo F, et al. Tuberculosis in Takayasu arteritis: a retrospective study in 1105 Chinese patients[J]. J Geriatr Cardiol, 2019, 16(8): 648-655. doi:10.11909/j.issn.1671-5411.2019.08.003pmid:31555333 |
| [21] | Soto ME, Del Carmen ávila-Casado M, Huesca-Gómez C, et al. Detection of IS6110 and HupB gene sequences ofMycobacterium tuberculosisandbovisin the aortic tissue of patients with Takayasu’s arteritis[J]. BMC Infect Dis, 2012, 12: 194. doi:10.1186/1471-2334-12-194URL |
| [22] | Kumar Chauhan S, Kumar Tripathy N, Sinha N, et al. Cellular and humoral immune responses to mycobacterial heat shock protein-65 and its human homologue in Takayasu’s arteritis[J]. Clin Exp Immunol, 2004, 138(3): 547-553. pmid:15544635 |
| [23] | Li T, Gao N, Cui W, et al. Natural killer cells and their function in Takayasu’s arteritis[J]. Clin Exp Rheumatol, 2020, 38 Suppl 124(2):84-90. |
| [24] | Seko Y. Takayasu arteritis: insights into immunopathology[J]. Jpn Heart J, 2000, 41(1): 15-26. pmid:10807525 |
| [25] | Graver JC, Boots AMH, Haacke EA, et al. Massive B-cell infiltration and organization into artery tertiary lymphoid organs in the aorta of large vessel giant cell arteritis[J]. Front Immunol, 2019, 10: 83. doi:10.3389/fimmu.2019.00083URL |
| [26] | Saadoun D, Garrido M, Comarmond C, et al. Th1 and Th17 cytokines drive inflammation in Takayasu arteritis.[J]. Arthritis Rheumatol, 2015, 67(5): 1353-1360. doi:10.1002/art.39037URL |
| [27] | Mutoh T, Shirai T, Ishii T, et al. Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis[J]. Nat Commun, 2020, 11(1): 1253. doi:10.1038/s41467-020-15088-0URL |
| [28] | Alibaz-Oner F, Yentür SP, Saruhan-Direskeneli G, et al. Serum cytokine profiles in Takayasu’s arteritis: search for biomarkers[J]. Clin Exp Rheumatol, 2015, 33(2 Suppl 89): 32-35. |
| [29] | Savioli B, Abdulahad WH, Brouwer E, et al. Are cytokines and chemokines suitable biomarkers for Takayasu arteritis?[J]. Autoimmun Rev, 2017, 16(10): 1071-1078. doi:S1568-9972(17)30206-9pmid:28778711 |
| [30] | Park MC, Lee SW, Park YB, et al. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis[J]. Rheumatology (Oxford), 2006, 45(5): 545-548. doi:10.1093/rheumatology/kei266URL |
| [31] | Li J, Wang Y, Wang Y, et al. Association between acute phase reactants, interleukin-6, tumor necrosis factor-α, and disease activity in Takayasu’s arteritis patients[J]. Arthritis Res Ther, 2020, 22(1): 285. doi:10.1186/s13075-020-02365-yURL |
| [32] | Dhawan V, Mahajan N, Jain S. Role of C-C chemokines in Takayasu’s arteritis disease[J]. Int J Cardiol, 2006, 112(1): 105-111. pmid:16647147 |
| [33] | Wu G, Mahajan N, Dhawan V. Acknowledged signatures of matrix metalloproteinases in Takayasu’s arteritis[J]. Biomed Res Int, 2014, 2014: 827105. |
| [34] | Mahajan N, Dhawan V, Malik S, et al. Implication of oxidative stress and its correlation with activity of matrix metalloproteinases in patients with Takayasu’s arteritis disease[J]. Int J Cardiol, 2010, 145(2): 286-288. doi:S0167-5273(09)01518-6pmid:19913312 |
| [35] | Matsuyama A, Sakai N, Ishigami M, et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis[J]. Circulation, 2003, 108(12): 1469-1473. doi:10.1161/01.CIR.0000090689.69973.B1pmid:12952836 |
| [36] | Régnier P, Le Joncour A, Maciejewski-Duval A, et al. Targeting JAK/STAT pathway in Takayasu’s arteritis[J]. Ann Rheum Dis, 2020, 79(7): 951-959. doi:10.1136/annrheumdis-2019-216900pmid:32213496 |
| [37] | Watanabe R, Berry GJ, Liang DH, et al. Cellular signaling pathways in medium and large vessel vasculitis[J]. Front Immunol, 2020, 11: 587089. doi:10.3389/fimmu.2020.587089URL |
| [38] | Maciejewski-Duval A, Comarmond C, Leroyer A, et al. mTOR pathway activation in large vessel vasculitis[J]. J Autoimmun, 2018, 94: 99-109. doi:S0896-8411(18)30228-2pmid:30061014 |
| [39] | Bursi R, Cafaro G, Perricone C, et al. Contribution of Janus-kinase/signal transduction activator of transcription pathway in the pathogenesis of vasculitis[J]. Front Pharmacol, 2021, 12: 635663. doi:10.3389/fphar.2021.635663URL |
| [40] | Zhang H, Watanabe R, Berry GJ, et al. Inhibition of JAK-STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis[J]. Circulation, 2018, 137(18): 1934-1948. doi:10.1161/CIRCULATIONAHA.117.030423pmid:29254929 |
| [41] | Régnier P, Le Joncour A, Maciejewski-Duval A, et al. Targeting JAK/STAT pathway in Takayasu’s arteritis[J]. Ann Rheum Dis, 2020, 79(7): 951-959. doi:10.1136/annrheumdis-2019-216900pmid:32213496 |
| [42] | Hadjadj J, Canaud G, Mirault T, et al. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G[J]. Rheumatology (Oxford), 2018, 57(6): 1011-1020. doi:10.1093/rheumatology/key017pmid:29506143 |
| [43] | Ishihara T, Haraguchi G, Kamiishi T, et al. Sensitive assessment of activity of Takayasu’s arteritis by pentraxin 3, a new biomarker[J]. J Am Coll Cardiol, 2011, 57(16): 1712-1713. doi:10.1016/j.jacc.2010.10.058pmid:21492771 |
| [44] | Matsuyama A, Sakai N, Ishigami M, et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis[J]. Circulation, 2003, 108(12): 1469-1473. doi:10.1161/01.CIR.0000090689.69973.B1pmid:12952836 |
| [45] | Park MC, Lee SW, Park YB, et al. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis[J]. Rheumatology (Oxford), 2006, 45(5): 545-548. doi:10.1093/rheumatology/kei266URL |
| [46] | Maz M, Chung SA, Abril A, et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the management of giant cell arteritis and takayasu arteritis[J]. Arthritis Care Res (Hoboken), 2021, 73(8): 1349-1365. |
| [47] | Kenar G, Karaman S, Çetin P, et al. Imaging is the major determinant in the assessment of disease activity in Takayasu’s arteritis[J]. Clin Exp Rheumatol, 2020, 38 Suppl 124(2):55-60. |
| [48] | Ma LY, Li CL, Ma LL, et al. Value of contrast-enhanced ultrasonography of the carotid artery for evaluating disease activity in Takayasu arteritis[J]. Arthritis Res Ther, 2019, 21(1): 24. doi:10.1186/s13075-019-1813-2URL |
| [49] | Sun Y, Huang Q, Jiang L. Radiology and biomarkers in assessing disease activity in Takayasu arteritis[J]. Int J Rheum Dis, 2019, 22 Suppl 1: 53-59. |
| [50] | Padoan R, Crimì F, Felicetti M, et al. Fully integrated 18F-FDG PET/MR in large vessel vasculitis[J]. Q J Nucl Med Mol Imaging, 2019.[Epub ahead of print]. |
| [51] | Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy[J]. J Am Coll Cardiol, 1988, 12(4): 964-972. pmid:2901440 |
| [52] | Sharma BK, Jain S, Suri S, et al. Diagnostic criteria for Takayasu arteritis[J]. Int J Cardiol, 1996, 54 Suppl: S141-S147. doi:10.1016/s0167-5273(96)88783-3pmid:9119516 |
| [53] | Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis[J]. Arthritis Rheum, 1990, 33(8): 1129-1134. doi:10.1002/art.1780330811URL |
| [54] | Peter Grayson, Raashid Luqmani. ACR convergence 2021. oral presentation at 9th Nov. |
| [55] | Comarmond C, Biard L, Lambert M, et al. Long-term outcomes and prognostic factors of complications in Takayasu arteritis[J]. Circulation, 2017, 136(12): 1114-1122. doi:10.1161/CIRCULATIONAHA.116.027094pmid:28701469 |
| [1] | 赵晨薇 马刚 林晓曦.葡萄酒色斑增厚机制的研究进展[J]. 组织工程与重建外科杂志, 2022, 18(1): 83-. |
| [2] | 赵含丹, 许利军.人类免疫缺陷病毒相关隐球菌脑膜炎的诊治现状和挑战[J]. 诊断学理论与实践, 2022, 21(04): 419-424. |
| [3] | 陈志敏, 何浩岚.艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
| [4] | 陈志敏, 刘波, 何浩岚, 何耀祖, 冯理智, 刘新华, 张坚生, 蔡卫平, 李凌华.133例艾滋病合并马尔尼菲篮状菌病死亡病例分析[J]. 诊断学理论与实践, 2022, 21(04): 444-449. |
| [5] | 胡静静, 吕海伟, 荀静娜, 沈银忠, 刘莉, 卢洪洲.2012年至2021年上海市艾滋病合并分枝杆菌感染患者的菌种分布特征[J]. 诊断学理论与实践, 2022, 21(04): 450-455. |
| [6] | 高晶晶, 高艳虹.早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
| [7] | 陈晓娟, 张雯, 蔡瑜.经导管脾动脉栓塞术治疗胰源性门静脉高压致消化道出血(附1例报告)[J]. 外科理论与实践, 2022, 27(04): 359-362. |
| [8] | 陈宏, 沈银忠.人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
| [9] | 汤建平, 龚邦东.干燥综合征的诊治现状、挑战和思考[J]. 诊断学理论与实践, 2022, 21(03): 291-298. |
| [10] | 李佳, 吕良敬.靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
| [11] | 牟兴, 叶倩仪, 卢红娟, 徐沪济, 吴歆.季节变化对风湿病发病机制及病情活动的影响[J]. 诊断学理论与实践, 2022, 21(03): 304-311. |
| [12] | 刘萍, 肖园, 王歆琼, 陆亭伟, 赵雪松, 杨媛艳.Wiskott-Aldrich综合征合并克罗恩病一例并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 349-354. |
| [13] | 赵东宝.风湿病继发骨质疏松症研究进展[J]. 内科理论与实践, 2022, 17(03): 181-185. |
| [14] | 王宏智, 袁昳玮.类风湿关节炎的慢病管理[J]. 内科理论与实践, 2022, 17(03): 202-207. |
| [15] | 张春丽, 徐静, 潘晓霞, 胡晓帆, 李娅.IgG4相关肾病临床及病理特征分析[J]. 内科理论与实践, 2022, 17(03): 214-219. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||
