
内科理论与实践››2022,Vol. 17››Issue (01): 92-96.doi:10.16138/j.1673-6087.2022.01.018
收稿日期:2021-05-10出版日期:2022-02-28发布日期:2022-07-25通讯作者:潘曙明 E-mail:shumingpan@aliyun.com基金资助:
Received:2021-05-10Online:2022-02-28Published:2022-07-25| [1] | Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi:10.1001/jama.2016.0287URL |
| [2] | Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. doi:10.1016/S0140-6736(19)32989-7URL |
| [3] | Dugar S, Choudhary C, Duggal A. Sepsis and septic shock: guideline-based management[J]. Cleve Clin J Med. 2020, 87(1): 53-64. doi:10.3949/ccjm.87a.18143URL |
| [4] | Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management[J]. BMJ, 2016, 353: 1585-1605. |
| [5] | Leslie M. Immunology. Stalling sepsis?[J]. Science, 2012, 337(6098): 1036. doi:10.1126/science.337.6098.1036pmid:22936753 |
| [6] | van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets[J]. Nat Rev Immunol, 2017, 17(7): 407-420. doi:10.1038/nri.2017.36pmid:28436424 |
| [7] | Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2): 121-137. doi:10.1038/nrneph.2017.165URL |
| [8] | Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev, 2016, 274(1): 330-353. doi:10.1111/imr.12499URL |
| [9] | Allison SJ. Sepsis: NET-induced coagulation induces organ damage in sepsis[J]. Nat Rev Nephrol, 2017, 13(3): 133. doi:10.1038/nrneph.2017.7pmid:28138127 |
| [10] | Mollnes TE, Huber-Lang M. Complement in sepsis-when science meets clinics[J]. FEBS Lett, 2020, 594(16): 2621-2632. doi:10.1002/1873-3468.13881pmid:32621378 |
| [11] | Zhang H, Zeng L, Xie M, et al. TMEM173 drives lethal coagulation in sepsis[J]. Cell Host Microbe, 2020, 27(4): 556-570. doi:S1931-3128(20)30112-8pmid:32142632 |
| [12] | Xu S, Pan X, Mao L, et al. Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation[J]. Cell Commun Signal, 2020, 18(1): 104. doi:10.1186/s12964-020-00603-zURL |
| [13] | Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis[J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370. doi:10.1164/rccm.201910-1911TRURL |
| [14] | Prauchner CA. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy[J]. Burns, 2017, 43(3): 471-485. doi:S0305-4179(16)30400-4pmid:28034666 |
| [15] | 吴玉娇, 张晶, 漆立军. 血必净注射液治疗脓毒症临床疗效和安全性的Meta分析[J]. 中华危重病急救医学, 2020, 32(6): 691-695. |
| [16] | Li C, Wang P, Li M, et al. The current evidence for the treatment of sepsis with Xuebijing injection: bioactive constituents, findings of clinical studies and potential mechanisms[J]. J Ethnopharmacol, 2021, 265: 1-17. |
| [17] | 邢燕, 程东良, 史长松. 参附注射液抑制HMGB1诱发的CD11B+细胞麻痹对严重脓毒症内皮的保护作用[J]. 中华危重病急救医学, 2020, 32(6): 696-701. |
| [18] | Zou M, Yang W, Niu L, et al. Polydatin attenuates mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway[J]. Microb Pathog, 2020, 149: 104552. doi:10.1016/j.micpath.2020.104552URL |
| [19] | Fu Y, Jin Y, Shan A, et al. Polydatin protects bovine mammary epithelial cells against zearalenone-induced apoptosis by inhibiting oxidative responses and endoplasmic reticulum stress[J]. Toxins (Basel), 2021, 13(2): 121-138. doi:10.3390/toxins13020121URL |
| [20] | Kim JS, Jeong SK, Oh SJ, et al. The resveratrol analogue, HS-1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth[J]. Int J Oncol, 2020, 56(6): 1405-1416. |
| [21] | Marumo M, Ekawa K, Wakabayashi I. Resveratrol inhibits Ca2+signals and aggregation of platelets[J]. Environ Health Prev Med, 2020, 25(1): 70. doi:10.1186/s12199-020-00905-1URL |
| [22] | Giordo R, Zinellu A, Eid AH, et al. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders[J]. Molecules, 2021, 26(4): 856. doi:10.3390/molecules26040856URL |
| [23] | van Polanen N, Zacharewicz E, de Ligt M, et al. Resveratrol-induced remodelling of myocellular lipid stores: a study in metabolically compromised humans[J]. Physiol Rep, 2021, 9(2): e14692. |
| [24] | Chen J, Liu Q, Wang Y, et al. Protective effects of resveratrol liposomes on mitochondria in substantia nigra cells of parkinsonized rats[J]. Ann Palliat Med, 2021, 10(3): 2458-2468. doi:10.21037/apm-19-426URL |
| [25] | 张云婷, 黄晓, 陈运中, 等. 虎杖主要化学成分及其生物合成机制研究进展[J]. 中国中药杂志, 2020, 45(18): 4364-4372. |
| [26] | 刘慧文, 王国凯, 储宣宁, 等. 不同产地虎杖HPLC指纹图谱及6种成分含量测定[J]. 现代中药研究与实践, 2018, 32(3): 13-18. |
| [27] | Meng QH, Liu HB, Wang JB. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway[J]. Food Chem Toxicol, 2016, 96: 215-225. doi:10.1016/j.fct.2016.07.032URL |
| [28] | Chen L, Lan Z, Lin Q, et al. Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice[J]. Food Chem Toxicol, 2013, 52: 28-35. doi:10.1016/j.fct.2012.10.037URL |
| [29] | O’Sullivan AW, Wang JH, Redmond HP. NF-κB 38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy[J]. J Surg Res, 2009, 152(1): 46-53. doi:10.1016/j.jss.2008.04.030URL |
| [30] | Wang Y, Wang L, Gong Z. Regulation of acetylation in high mobility group protein B1 cytosol translocation[J]. DNA Cell Biol, 2019, 38(5): 491-499. doi:10.1089/dna.2018.4592pmid:30874449 |
| [31] | Sun R, Zhang Y, Lv Q, et al. Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha)[J]. J Biol Chem, 2011, 286(18): 15918-15928. doi:10.1074/jbc.M110.178798URL |
| [32] | Denning NL, Aziz M, Gurien SD, et al. DAMPs and NETs in sepsis[J]. Front Immunol, 2019, 10: 2536. doi:10.3389/fimmu.2019.02536URL |
| [33] | Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1[J]. Front Immunol, 2020, 11: 484. doi:10.3389/fimmu.2020.00484URL |
| [34] | Wang B, Bellot GL, Iskandar K, et al. Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis[J]. Sci Rep, 2020, 10(1): 18837. doi:10.1038/s41598-020-74578-9URL |
| [35] | Shang X, Lin K, Yu R, et al. Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway[J]. Med Sci Monit, 2019, 25: 9290-9298. doi:10.12659/MSM.918369URL |
| [36] | Xu W, Lu Y, Yao J, et al. Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury[J]. Shock, 2014, 42(5): 440-447. doi:10.1097/SHK.0000000000000225URL |
| [37] | Wen Q, Lau N, Weng H, et al. Chrysophanol exerts anti-inflammatory activity by targeting histone deacetylase 3 through the high mobility group protein 1-nuclear transcription factor-κB signaling pathwayin vivoandin vitro[J]. Front Bioeng Biotechnol, 2020, 8: 623866. doi:10.3389/fbioe.2020.623866URL |
| [38] | Qing J, Zhang Z, Novák P, et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 917-926. doi:10.1093/abbs/gmaa081URL |
| [39] | Saqib U, Sarkar S, Suk K, et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation[J]. Oncotarget, 2018, 9(25): 17937-17950. doi:10.18632/oncotarget.24788pmid:29707159 |
| [40] | Ding Y, Liu P, Chen ZL, et al. Emodin attenuates lipopolysaccharide-induced acute liver injury via inhibiting the TLR4 signaling pathwayin vitroandin vivo[J]. Front Pharmacol, 2018, 9: 962. doi:10.3389/fphar.2018.00962pmid:30186181 |
| [41] | Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies[J]. Oxid Med Cell Longev, 2017, 2017: 5985209. |
| [42] | Chen Y, Luan L, Wang C, et al. Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats[J]. Nitric Oxide, 2019, 85: 1-9. doi:10.1016/j.niox.2019.01.009URL |
| [43] | Heemskerk S, Masereeuw R, Russel FG, et al. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury[J]. Nat Rev Nephrol, 2009, 5(11): 629-640. doi:10.1038/nrneph.2009.155pmid:19786992 |
| [44] | Aydın S, Şahin TT, Bacanlı M, et al. Resveratrol protects sepsis-induced oxidative DNA damage in liver and kidney of rats[J]. Balkan Med J, 2016, 33(6): 594-601. doi:10.5152/balkanmedj.2016.15516URL |
| [45] | Zhang HX, Duan GL, Wang CN, et al. Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress[J]. Pulm Pharmacol Ther, 2014, 27(2): 150-155. doi:10.1016/j.pupt.2013.07.007URL |
| [46] | 吴孟娇, 李晓会, 郑佳佳, 等. 虎杖苷对脓毒症致急性肾损伤小鼠的保护作用[J]. 中草药, 2011, 42(10): 2033-2036. |
| [47] | Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733. doi:10.1016/j.bbamcr.2018.02.010URL |
| [48] | Wang Y, Wang X, Zhang L, et al. Alleviation of acute lung injury in rats with sepsis by resveratrol via the phosphatidylinositol 3-kinase/nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (PI3K/Nrf2/HO-1) pathway[J]. Med Sci Monit, 2018, 24: 3604-3611. doi:10.12659/MSM.910245URL |
| [49] | Li XH, Gong X, Zhang L, et al. Protective effects of polydatin on septic lung injury in mice via upregulation of HO-1[J]. Mediators Inflamm, 2013, 2013: 354087. |
| [50] | Wu J, Deng Z, Sun M, et al. Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation[J]. Lab Invest, 2020, 100(4): 643-656. doi:10.1038/s41374-019-0332-8URL |
| [51] | Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair[J]. Gastroenterology, 2016, 151(4): 616-632. doi:10.1053/j.gastro.2016.07.008URL |
| [52] | Chen L, Li L, Han Y, et al. Tong-fu-li-fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating ZO-1/occludin/claudin-1 expression[J]. J Pharmacol Sci, 2020, 143(2): 89-96. doi:S1347-8613(20)30024-4pmid:32173265 |
| [53] | Li Y, Guo R, Zhang M, et al. Protective effect of emodin on intestinal epithelial tight junction barrier integrity in rats with sepsis induced by cecal ligation and puncture[J]. Exp Ther Med, 2020, 19(6): 3521-3530. |
| [54] | Brilha S, Ong CWM, Weksler B, et al. Matrix metalloproteinase-9 activity and a downregulated hedgehog pathway impair blood-brain barrier function in anin vitromodel of CNS tuberculosis[J]. Sci Rep, 2017, 7(1): 16031. doi:10.1038/s41598-017-16250-3pmid:29167512 |
| [55] | 刘新强, 温妙云, 韩永丽, 等. 白藜芦醇改善脓毒症脑病大鼠认知功能障碍的机制研究[J]. 中华危重病急救医学, 2020, 32(10): 1189-1193. |
| [56] | Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 759-773. doi:10.1016/j.bbadis.2018.10.011URL |
| [57] | Liu X, Shao K, Sun T. SIRT1 regulates the human alveolar epithelial A549 cell apoptosis induced byPseudomonas aeruginosalipopolysaccharide[J]. Cell Physiol Biochem, 2013, 31(1): 92-101. doi:10.1159/000343352URL |
| [58] | An R, Zhao L, Xu J, et al. Resveratrol alleviates sepsis-induced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF-α and myocardial apoptosis via activation of Sirt1[J]. Mol Med Rep, 2016, 14(6): 5297-5303. doi:10.3892/mmr.2016.5861URL |
| [1] | 周易, 陈影, 陈尔真.甲状腺激素对脓毒症脏器功能维护作用的研究进展[J]. 内科理论与实践, 2022, 17(05): 408-412. |
| [2] | 郑毓真, 郑彦俊, 周易, 祁星, 陈薇薇, 史雯, 周伟君, 杨之涛, 陈影, 毛恩强, 陈尔真.综合性医院674例脓毒症住院患者的回顾性临床分析[J]. 内科理论与实践, 2022, 17(04): 278-282. |
| [3] | 陈敏, 车在前, 陈影, 马丽, 赵冰, 周伟君, 毛恩强, 陈尔真.白细胞血小板比值早期评估脓毒症预后的临床研究[J]. 内科理论与实践, 2022, 17(03): 208-213. |
| [4] | 王虎, 张姣姣, 孙俊楠, 王海嵘.白介素-6联合CD4+T淋巴细胞百分比对脓毒症患者预后的评估价值[J]. 内科理论与实践, 2021, 16(06): 404-408. |
| [5] | 王顺, 朱华芳, 毛承誉, 李东九, 王长谦.中药复方制剂干预动脉粥样硬化的实验研究[J]. 内科理论与实践, 2021, 16(04): 261-266. |
| [6] | 王雪洁, 陈孜瑾, 杜雯, 顾飞飞, 俞海瑾, 张文, 陈晓农.不同病原菌致血流感染相关急性肾损伤的危险因素分析[J]. 内科理论与实践, 2021, 16(01): 22-26. |
| [7] | 方均燕, 宋阿会, 佟琰, 丁峰, 刘英莉.脓毒症大鼠来源的外泌体对WJ-MSC的免疫调控能力的影响[J]. 组织工程与重建外科杂志, 2020, 16(3): 223-229. |
| [8] | 王秋云, 陈影, 赵冰, 孙思磊, 杨之涛, 毛恩强, 陈尔真.Sirt1通过HNF-1α/FXR-1通路调控脓毒症肝损伤的动物研究[J]. 诊断学理论与实践, 2020, 19(03): 279-285. |
| [9] | 李峰, 吴璟奕, 陈影, 陈尔真,.普通肝素在治疗脓毒症中的应用[J]. 内科理论与实践, 2020, 15(01): 61-63. |
| [10] | 田芮, 刘嘉琳, 瞿洪平,.脓毒症合并急性肾损伤患者血清血管生成素2、正五聚蛋白3水平的研究[J]. 内科理论与实践, 2019, 14(05): 313-316. |
| [11] | 陈亚芬, 陈媛媛, 吴丽苹, 薛琪琪, 杨克, 陆林, 曹久妹.沉默信息调节因子1对急性心肌梗死小鼠的作用研究[J]. 诊断学理论与实践, 2018, 17(06): 670-675. |
| [12] | 李艳秀, 左祥荣, 曹权,.动态监测血小板计数对脓毒症患者预后评价的意义[J]. 内科理论与实践, 2018, 13(06): 354-357. |
| [13] | 李梅玲, 李磊, 张如愿, 刘嘉琳, 瞿洪平.微量元素补充对术后脓毒症病人炎症反应的影响[J]. 外科理论与实践, 2018, 23(06): 533-538. |
| [14] | 宋剑峰, 陈尔真,.Apelin与脓毒症[J]. 内科理论与实践, 2017, 12(06): 416-418. |
| [15] | 李艳秀, 左祥荣, 曹权,.血小板计数水平对脓毒症患者的临床意义[J]. 内科理论与实践, 2017, 12(05): 351-354. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||
