
内科理论与实践››2022,Vol. 17››Issue (01): 4-10.doi:10.16138/j.1673-6087.2022.01.002
收稿日期:2021-11-24出版日期:2022-02-28发布日期:2022-07-25通讯作者:柴进 E-mail:jin.chai@cldcsw.org基金资助:
Received:2021-11-24Online:2022-02-28Published:2022-07-25| [1] | Chawla A, Saez E, Evans RM. “Don’t know much bile-ology”[J]. Cell, 2000, 103(1): 1-4. pmid:11051540 |
| [2] | Russell DW. The enzymes, regulation, and genetics of bile acid synthesis[J]. Annu Rev Biochem, 2003, 72: 137-174. pmid:12543708 |
| [3] | Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis[J]. N Engl J Med, 1998, 339(17): 1217-1227. doi:10.1056/NEJM199810223391707URL |
| [4] | Ghonem NS, Assis DN, Boyer JL. Fibrates and cholestasis[J]. Hepatology, 2015, 62(2): 635-643. doi:10.1002/hep.27744URL |
| [5] | Cai SY, Boyer JL. Bile infarcts: new insights into the pathogenesis of obstructive cholestasis[J]. Hepatology, 2019, 69(2): 473-475. doi:10.1002/hep.30291URL |
| [6] | Chai J, He Y, Cai SY, et al. Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C 3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway[J]. Hepatology, 2012, 55(5): 1485-1494. doi:10.1002/hep.24801pmid:22105759 |
| [7] | Chai J, Cai SY, Liu X, et al. Canalicular membrane MRP2/ABCC2 internalization is determined by Ezrin Thr567 phosphorylation in human obstructive cholestasis[J]. J Hepatol, 2015, 63(6): 1440-1448. doi:10.1016/j.jhep.2015.07.016pmid:26212029 |
| [8] | Chai J, Luo D, Wu X, et al. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis[J]. J Gastrointest Sur, 2011, 15(6): 996-1004. |
| [9] | Pan Q, Zhang X, Zhang L, et al. Solute carrier organic anion transporter family member 3A1 is a bile acid efflux transporter in cholestasis[J]. Gastroenterology, 2018, 155(5): 1578-1592. doi:10.1053/j.gastro.2018.07.031URL |
| [10] | Corpechot C, Chazouillères O, Rousseau A, et al. A placebo-controlled trial of bezafibrate in primary biliary cholangitis[J]. N Engl J Med, 2018, 378(23): 2171-2181. doi:10.1056/NEJMoa1714519URL |
| [11] | Schwarz M, Russell DW, Dietschy JM, et al. Alternate pathways of bile acid synthesis in the cholesterol 7α-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding[J]. J Lipid Res, 2001, 42(10): 1594-1603. pmid:11590215 |
| [12] | Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease[J]. Gastroenterology, 2004, 126(1): 322-342. doi:10.1053/j.gastro.2003.06.005pmid:14699511 |
| [13] | Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation[J]. Physiol Rev, 2003, 83(2): 633-671. doi:10.1152/physrev.00027.2002URL |
| [14] | Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation[J]. Physiol Rev, 2009, 89(1): 147-191. doi:10.1152/physrev.00010.2008URL |
| [15] | Slijepcevic D, Kaufman C, Wichers CG, et al. Impaired uptake of conjugated bile acids and hepatitis B virus pres1-binding in Na+-taurocholate cotransporting polypeptide knockout mice[J]. Hepatology, 2015, 62(1): 207-219. doi:10.1002/hep.27694pmid:25641256 |
| [16] | Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond[J]. J Hepatol, 2013, 58(1): 155-168. doi:10.1016/j.jhep.2012.08.002pmid:22885388 |
| [17] | Dawson PA, Lan T, Rao A. Bile acid transporters[J]. J Lipid Res, 2009, 50(12): 2340-2357. doi:10.1194/jlr.R900012-JLR200pmid:19498215 |
| [18] | Slijepcevic D, Roscam Abbing RLP, Fuchs CD, et al. Na+-taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice[J]. Hepatology, 2018, 68(3): 1057-1069. doi:10.1002/hep.29888pmid:29572910 |
| [19] | Vaz FM, Paulusma CC, Huidekoper H, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype[J]. Hepatology, 2015, 61(1): 260-267. doi:10.1002/hep.27240URL |
| [20] | Liu R, Chen C, Xia X, et al. Homozygous p.Ser267Phe in SLC10A1 is associated with a new type of hypercholanemia and implications for personalized medicine[J]. Sci Rep, 2017, 7(1): 9214. doi:10.1038/s41598-017-07012-2URL |
| [21] | Pan Q, Luo G, Qu J, et al. A homozygous R148W mutation in semaphorin 7A causes progressive familial intrahepatic cholestasis[J]. EMBO Mol Med, 2021, 13(11): e14563. |
| [22] | Donkers JM, Kooijman S, Slijepcevic D, et al. NTCP deficiency in mice protects against obesity and hepatosteatosis[J]. JCI Insight, 2019, 5(14): e127197. |
| [23] | Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective[J]. Physiol Rev, 2015, 95(1): 83-123. doi:10.1152/physrev.00025.2013URL |
| [21] | Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond[J]. J Hepatol, 2013, 58(1): 155-168. doi:10.1016/j.jhep.2012.08.002pmid:22885388 |
| [24] | Csanaky IL, Lu H, Zhang Y, et al. Organic anion-transporting polypeptide 1b2 (Oatp1b2) is important for the hepatic uptake of unconjugated bile acids: studies in Oatp1b2-null mice[J]. Hepatology, 2011, 53(1): 272-281. doi:10.1002/hep.23984pmid:20949553 |
| [25] | van de Steeg E, Stránecky V, Hartmannová H, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver[J]. J Clin Invest, 2012, 122(2): 519-528. doi:10.1172/JCI59526URL |
| [26] | Ballatori N, Christian WV, Lee JY, et al. OSTα-OSTβ: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia[J]. Hepatology, 2005, 42(6): 1270-1279. doi:10.1002/hep.20961URL |
| [27] | Soroka CJ, Mennone A, Hagey LR, et al. Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis[J]. Hepatology, 2010, 51(1): 181-190. doi:10.1002/hep.23265pmid:19902485 |
| [28] | Sultan M, Rao A, Elpeleg O, et al. Organic solute transporter-β (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis[J]. Hepatology, 2018, 68(2): 590-598. doi:10.1002/hep.29516pmid:28898457 |
| [29] | Gao E, Cheema H, Waheed N, et al. Organic solute transporter alpha deficiency: a disorder with cholestasis, liver fibrosis, and congenital diarrhea[J]. Hepatology, 2020, 71(5): 1879-1882. doi:10.1002/hep.31087URL |
| [30] | Boyer JL, Soroka CJ. Bile formation and secretion: an update[J]. J Hepatol, 2021, 75(1): 190-201. doi:10.1016/j.jhep.2021.02.011URL |
| [31] | Xu J, Kausalya PJ, Van Hul N, et al. Protective functions of ZO-2/Tjp2 expressed in hepatocytes and cholangiocytes against liver injury and cholestasis[J]. Gastroenterology, 2021, 160(6): 2103-2118. doi:10.1053/j.gastro.2021.01.027URL |
| [32] | Kubitz R, Dröge C, Kluge S, et al. Autoimmune BSEP disease: disease recurrence after liver transplantation for progressive familial intrahepatic cholestasis[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 273-284. doi:10.1007/s12016-014-8457-4URL |
| [33] | Cao W, Kayama H, Chen ML, et al. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids[J]. Immunity, 2017, 47(6): 1182-1196. doi:10.1016/j.immuni.2017.11.012URL |
| [34] | Kipp H, Arias IM. Trafficking of canalicular ABC transporters in hepatocytes[J]. Annu Rev Physiol, 2002, 64: 595-608. doi:10.1146/annurev.physiol.64.081501.155793URL |
| [35] | Lang C, Meier Y, Stieger B, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury[J]. Pharmacogenet Genomics, 2007, 17(1): 47-60. doi:10.1097/01.fpc.0000230418.28091.76URL |
| [36] | Gautherot J, Delautier D, Maubert MA, et al. Phosphorylation of ABCB4 impacts its function: insights from disease-causing mutations[J]. Hepatology, 2014, 60(2): 610-621. doi:10.1002/hep.27170pmid:24723470 |
| [37] | Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis[J]. Drug Metab Rev, 2010, 42(3): 437-445. doi:10.3109/03602530903492004pmid:20028269 |
| [38] | Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2)[J]. Pflugers Arch, 2007, 453(5): 643-659. doi:10.1007/s00424-006-0109-yURL |
| [39] | Beer AJ, Hertz D, Seemann E, et al. Reduced Mrp2 surface availability as PI3Kγ-mediated hepatocytic dysfunction reflecting a hallmark of cholestasis in sepsis[J]. Sci Rep, 2020, 10(1): 13110. doi:10.1038/s41598-020-69901-3URL |
| [40] | Bohan A, Chen WS, Denson LA, et al. Tumor necrosis factor alpha-dependent up-regulation of LRH-1 and MRP3(ABCC3) reduces liver injury in obstructive cholestasis[J]. J Biol Chem, 2003, 278(38): 36688-36698. doi:10.1074/jbc.M304011200pmid:12837754 |
| [41] | Chen W, Cai SY, Xu S, et al. Nuclear receptors RXRα: RARα are repressors for human MRP3 expression[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(5): G1221-G1227. |
| [42] | Zhang X, Wang T, Yang Y, et al. Tanshinone ⅡA attenuates acetaminophen-induced hepatotoxicity through HOTAIR-Nrf2-MRP2/4 signaling pathway[J]. Biomed Pharmacother, 2020, 130: 110547. doi:10.1016/j.biopha.2020.110547URL |
| [43] | Vollrath V, Wielandt AM, Iruretagoyena M, et al. Role of Nrf2 in the regulation of the Mrp2(ABCC2) gene[J]. Biochem J, 2006, 395(3): 599-609. doi:10.1042/BJ20051518pmid:16426233 |
| [44] | Schuetz EG, Strom S, Yasuda K, et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450[J]. J Biol Chem, 2001, 276(42): 39411-39418. doi:10.1074/jbc.M106340200pmid:11509573 |
| [45] | Mennone A, Soroka CJ, Cai SY, et al. MRP4-/-mice have an impaired cytoprotective response in obstructive cholestasis[J]. Hepatology, 2006, 43(5): 1013-1021. pmid:16628672 |
| [46] | Keppler D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia[J]. Drug Metab Dispos, 2014, 42(4): 561-565. doi:10.1124/dmd.113.055772URL |
| [47] | Fang C, Filipp FV, Smith JW. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[J]. J Lipid Res, 2012, 53(4): 664-673. doi:10.1194/jlr.M021733URL |
| [48] | Harris MJ, Kagawa T, Dawson PA, et al. Taurocholate transport by hepatic and intestinal bile acid transporters is independent of FIC1 overexpression in Madin-Darby canine kidney cells[J]. J Gastroenterol Hepatol, 2004, 19(7): 819-825. doi:10.1111/j.1440-1746.2004.03347.xURL |
| [49] | Richter D, Harsch S, Strohmeyer A, et al. MALDI-TOF mass spectrometry screening of cholelithiasis risk markers in the gene of HNF1α[J]. J Proteomics, 2012, 75(12): 3386-3399. doi:10.1016/j.jprot.2012.04.036URL |
| [50] | Chen F, Ma L, Sartor RB, et al. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation[J]. Gastroenterology, 2002, 123(6): 2005-2016. doi:10.1053/gast.2002.37055URL |
| [51] | Yang N, Dong YQ, Jia GX, et al. ASBT(SLC10A2): a promising target for treatment of diseases and drug discovery[J]. Biomed Pharmacother, 2020, 132: 110835. doi:10.1016/j.biopha.2020.110835pmid:33035828 |
| [52] | Out C, Patankar JV, Doktorova M, et al. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4[J]. J Hepatol, 2015, 63(3): 697-704. doi:10.1016/j.jhep.2015.04.030URL |
| [1] | 陈超波, 蒋兆彦.胆汁酸代谢与非酒精性脂肪性肝病[J]. 外科理论与实践, 2019, 24(04): 371-374. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||
