
Journal of Diagnostics Concepts & Practice››2024,Vol. 23››Issue (01): 67-76.doi:10.16150/j.1671-2870.2024.01.009
• Original articles •Previous ArticlesNext Articles
ZHANG Qiong, WU Yanlin, HU Qiwei, ZHANG Zewei, HUANG Shouyue(
)
Received:2023-05-05Online:2024-02-25Published:2024-05-30Contact:HUANG Shouyue E-mail:yachtjj@hotmail.comCLC Number:
ZHANG Qiong, WU Yanlin, HU Qiwei, ZHANG Zewei, HUANG Shouyue. Application value of optical coherence tomography angiography in diagnosis of the non-proliferative diabetic retinopathy[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(01): 67-76.
Table 1
International classification criteria and clinical features of NPDR
| Classification | Clinical features |
|---|---|
| No retinopathy | No microvascular lesions |
| NPDR | |
| Mild | Microaneurysms only |
| Moderate | Microaneurysms and other microvascular lesions, but not severe NPDR |
| Severe | More than 20 intraretinal hemorrhages in four quadrants; or venous beading in two or more quadrants; or IRMA in one or more quadrant, but not proliferative diabetic retinopathy |
Figure 1
Superficial retinal vascular density The central zone refers to the vascular linear density within the circle of 1 mm diameter. The inner zone refers to the vascular linear density within the circle of 3 mm diameter with the exception of the central zone. The integrated zone refers to the vascular linear density within the circle of 3 mm diameter.
Figure 2
Superficial retinal perfusion density The central zone refers to the retinal perfusion density within the circle of 1 mm diameter. The inner zone refers to the retinal perfusion density within the circle of 3 mm diameter with the exception of the central zone. The integrated zone refers to the retina perfusion density within the circle of 3 mm diameter.
Table 2
Demographic characteristics of the subjects
| Characteristics | Total (n=122) |
No retinopathy (n=41) |
Mild NPDR (n=26) |
Moderate NPDR (n=26) |
Severe NPDR (n=29) |
Pvalue |
|---|---|---|---|---|---|---|
| Age (year) | 55.1±1.2 | 56.9±1.1 | 52.2±1.1 | 55.3±1.5 | 54.8±1.1 | 0.48 |
| Gender (male) | 86 (70.5%) | 29 (70.7%) | 20(76.9%) | 19 (73.1%) | 18 (62.1%) | 0.66 |
| BCVA | 0.80 (0.40) | 0.90 (0.30) | 0.95 (0.20) | 0.70 (0.35) | 0.70 (0.35) | <0.001 |
| IOP (mmHg) | 15.00±1.82 | 14.77±1.44 | 14.93±1.64 | 15.58±2.27 | 14.89±1.98 | 0.33 |
Table 3
Variations analysis of OCTA measures among different groups
| Indice | Total (n=122) | No retinopathy (n=41) | Mild NPDR (n=26) | Moderate NPDR (n=26) | Severe NPDR (n=29) | Pvalue |
|---|---|---|---|---|---|---|
| SSI | 8.00 (1.00) | 8.00 (2.00) | 8.00 (0.25) | 8.00 (1.00) | 8.00 (1.00) | 0.40 |
| CMT (μm) | 249.61±25.74 | 241.27±24.55 | 251.54±27.20 | 250.04±19.79 | 259.28±28.12 | 0.03 |
| VD | 15.76±1.78 | 16.92±1.27 | 16.24±1.23 | 15.61±1.10 | 13.81±1.70 | <0.001 |
| PD | 0.38±0.06 | 0.41±0.06 | 0.39±0.03 | 0.37±0.04 | 0.34±0.05 | <0.001 |
| FAZ-A | 0.27±0.12 | 0.34±0.10 | 0.25±0.12 | 0.24±0.13 | 0.23±0.12 | <0.001 |
| FAZ-P | 2.22±0.66 | 2.54±0.54 | 2.09±0.62 | 2.17±0.74 | 1.95±0.64 | 0.001 |
| FAZ-CI | 0.66±0.11 | 0.67±0.12 | 0.69±0.11 | 0.63±0.12 | 0.66±0.09 | 0.29 |
Table 4
Post hoc multiple comparisons between groups in OCTA measures with statistical significance (P value)
| Indice | Controlvs Mild NPDR |
Controlvs Moderate NPDR |
Controlvs Severe NPDR |
Mildvs Modera NPDR |
Mildvs Severe NPDR |
Moderatevs Severe NPDR |
|---|---|---|---|---|---|---|
| CMT | 0.110 | 0.170 | 0.0040 | 0.830 | 0.260 | 0.180 |
| VD | 0.040 | <0.001 | <0.001 | 0.100 | <0.001 | <0.001 |
| PD | 0.090 | 0.001 | <0.001 | 0.140 | <0.001 | 0.010 |
| FAZ-A | 0.003 | 0.001 | <0.001 | 0.700 | 0.520 | 0.800 |
| FAZ-P | 0.010 | 0.020 | <0.001 | 0.650 | 0.410 | 0.200 |
Table 5
Indice related with NPDR development in OCTA measures
| Indice | Estimate | SE | Pvalue | 95% CI | ||
|---|---|---|---|---|---|---|
| Lower | Upper | |||||
| Step 1 | CMT | 0.03 | 0.01 | 0.02 | 1.00 | 1.05 |
| VD | -0.60 | 0.26 | 0.02 | 0.33 | 0.92 | |
| PD | -16.93 | 9.83 | 0.09 | 0.00 | 10.32 | |
| FAZ-A | -4.14 | 5.25 | 0.43 | 0.00 | 463.35 | |
| FAZ-P | -0.95 | 1.04 | 0.36 | 0.05 | 2.93 | |
| Constant | 14.36 | 4.96 | 0.004 | |||
| Step 2 | CMT | 0.02 | 0.01 | 0.03 | 1.00 | 1.05 |
| VD | -0.95 | 0.22 | <0.001 | 0.25 | 0.60 | |
| FAZ-P | -1.40 | 0.49 | 0.001 | 0.11 | 0.58 | |
| Constant | 13.41 | 4.34 | 0.002 | |||
Table 6
Risk factor for NPDR severity in OCTA measures
| Characteristics | Estimate | SE | Pvalue | 95% CI | ||
|---|---|---|---|---|---|---|
| Lower | Upper | |||||
| Step1 | CMT | 0.02 | 0.01 | 0.01 | 0.01 | 0.04 |
| VD | -0.79 | 0.21 | <0.001 | -1.21 | -0.38 | |
| PD | -7.46 | 7.07 | 0.29 | -21.32 | 6.40 | |
| FAZ-A | -3.66 | 3.85 | 0.34 | -11.20 | 3.89 | |
| FAZ-P | -0.05 | 0.71 | 0.94 | -1.43 | 1.33 | |
| Step 2 | CMT | 0.02 | 0.01 | 0.01 | 0.00 | 0.04 |
| VD | -1.03 | 0.15 | <0.001 | -1.32 | -0.73 | |
Table 7
Evaluation of the diagnostic values of OCTA measures for NPDR
| Characteristics | AUC | Pvalue | Best cutoff value | |||
|---|---|---|---|---|---|---|
| Cutoff value | Youden’s index | Sensitivity | Specificity | |||
| CMT | 0.63 | 0.02 | 260.00 | 0.26 | 85.4% | 40.7% |
| VD | 0.78 | <0.001 | 16.55 | 0.46 | 61.0% | 85.2% |
| FAZ-P | 0.70 | <0.001 | 2.15 | 0.41 | 82.9% | 58.0% |
| CMT+VD+FAZ-P (Predicted probability) | 0.86 | <0.001 | 54.1% | 0.58 | 70.7% | 87.7% |
| [1] | CHEUNG N, MITCHELL P, WONG T Y. Diabetic retinopathy[J].Lancet,2010,376(9735):124-136. doi:10.1016/S0140-6736(09)62124-3pmid:20580421 |
| [2] | SADDA S R. Assessing the severity of diabetic retinopathy: early treatment diabetic retinopathy study report number 10[J].Ophthalmology,2020;127(4S):S97-S98. |
| [3] | SUN Z, YANG D, TANG Z, et al. Optical coherence tomography angiography in diabetic retinopathy: an updated review[J].Eye (Lond),2021,35(1):149-161. |
| [4] | SIMÓ-SERVAT O, HERNÁNDEZ C, SIMÓ R. Diabetic Retinopathy in the context of patients with diabetes[J].Ophthalmic Res,2019,62(4):211-217. |
| [5] | THOMAS R L, HALIM S, GURUDAS S, et al. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018[J].Diabetes Res Clin Pract,2019,157:107840. |
| [6] | CHEUNG C M G, FAWZI A, TEO K Y, et al. Diabetic macular ischaemia- a new therapeutic target?[J].Prog Retin Eye Res,2022,89:101033. |
| [7] | SCHWARTZ D M, FINGLER J, KIM D Y, et al. Phase-variance optical coherence tomography: a technique for noninvasive angiography[J].Ophthalmology,2014,121(1):180-187. doi:S0161-6420(13)00807-5pmid:24156929 |
| [8] | WANG B, CAMINO A, PI S, et al. Three-dimensional structural and angiographic evaluation of foveal ischemia in diabetic retinopathy: method and validation[J].Biomed Opt Express,2019,10(7):3522-3532. doi:10.1364/BOE.10.003522pmid:31360604 |
| [9] | OR C, DAS R, DESPOTOVIC I, et al. Combined multimodal analysis of peripheral retinal and macular circulation in diabetic retinopathy (COPRA study)[J].Ophthalmol Retina,2019,3(7):580-588. doi:S2468-6530(18)30580-3pmid:31078525 |
| [10] | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J].中国实用内科杂志,2018,38(4):292-344. doi:10.19538/j.nk2018040108 |
| Chinese Diabetes Society. Chinese guideline for the prevention and treatment of type 2 diabetes mellitus(2017 edition)[J].Chin J Pract Intern Med,2018,38(4):292-344. | |
| [11] | SAFI H, SAFI S, HAFEZI-MOGHADAM A, et al. Early detection of diabetic retinopathy[J].Surv Ophthalmol,2018,63(5):601-608. doi:S0039-6257(17)30323-5pmid:29679616 |
| [12] | GONG H, SONG Q, WANG L. Manifestations of central retinal artery occlusion revealed by fundus fluorescein angiography are associated with the degree of visual loss[J].Exp Ther Med,2016,11(6):2420-2424. pmid:27313672 |
| [13] | BONED-MURILLO A, ALBERTOS-ARRANZ H, DIAZ-BARREDA M D, et al. Optical coherence tomography angiography in diabetic patients: a systematic review[J].Biomedicines,2021,10(1):88. |
| [14] | AGRA C L D M, LIRA R P C, PINHEIRO F G, et al. Optical coherence tomography angiography: microvascular alterations in diabetic eyes without diabetic retinopathy[J].Arq Bras Oftalmol,2021,84(2):149-157. doi:10.5935/0004-2749.20210023pmid:33567012 |
| [15] | 谭心格, 高自清. 基于OCTA观察眼底不同分期的2型糖尿病患者黄斑区脉络膜及视网膜血流密度变化[J].眼科新进展,2023,43(3):230-233. |
| TAN X G, GAO Z Q. Observation of the changes in macular choroidal and retinal blood flow densi-ty in patients with type 2 diabetes mellitus at different stages by optical co-herence tomography angiography[J].Rec Adv Ophthalmol,2023,43(3):230-233. | |
| [16] | 向湘, 马红婕, 唐仕波. OCTA在DR患者黄斑血流密度观察中的应用[J].国际眼科杂志,2017,17(7):1344-1347. |
| XIANG X, MA H J, TANG S B. Clinical application of OCTA in observation of macular blood flow density in patients with diabetic retinopathy[J].Int Eye Sci,2017,17(7):1344-1347. | |
| [17] | 曾运考, 杨大卫, 曹丹, 等. 早期不同分期糖尿病视网膜病变黄斑区血流密度及血管结构改变[J].中华实验眼科杂志,2020,38(9):783-787. |
| ZENG Y K, YANG D W, CAO D, et al. Changes of macular vessel density and structures in different early stages of diabetic retinopathy[J].Chin J Exp Ophthalmol,2020,38(9):783-787. | |
| [18] | 焦聪, 侯超, 李蓉. TyG指数与2型糖尿病非增殖性视网膜病变的相关性[J].中国临床研究,2023,36(5):656-660. |
| JIAO C, HOU C, LI R. Correlation between TyG index and non-proliferative retinopathy in type 2 diabetes mellitus[J].Chin J Clin Res,2023,36(5):656-660. | |
| [19] | CONRATH J, GIORGI R, RACCAH D, et al. Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment[J].Eye (Lond),2005,19(3):322-326. |
| No related articles found! |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||