
Journal of Diagnostics Concepts & Practice››2023,Vol. 22››Issue (05): 486-493.doi:10.16150/j.1671-2870.2023.05.011
• Review articles •Previous ArticlesNext Articles
Received:2023-11-10Online:2023-10-25Published:2024-03-15Table 2
Diagnostic accuracy of AFP, PIVKA-Ⅱ, and AFP + PIVKA-Ⅱ in the detection of HCC and early HCC (95%CI)
| 诊断 | 标志物 | 灵敏度(%) | 特异度(%) | AUC |
|---|---|---|---|---|
| HCC | AFP | 59 (54~63) | 86 (82~89) | 0.77 |
| PIVKA-Ⅱ | 63 (58~67) | 91 (88~93) | 0.83 | |
| AFP + PIVKA-Ⅱ | 81 (77~84) | 83 (77~87) | 0.88 | |
| 早期HCC | AFP | 48 (39~57) | 89 (79~95) | 0.68 |
| PIVKA-Ⅱ | 45 (35~57) | 95 (91~97) | 0.84 | |
| AFP + PIVKA-Ⅱ | 70 (61~78) | 83 (79~86) | 0.83 |
Table 4
The role of some miRNAs in the pathogenesis of HCC and its clinical application
| miRNA | 改变 | 机制 | 功能 | 靶标 | 应用 | 参考文献 |
|---|---|---|---|---|---|---|
| miRNA-122 | ↑ | p53信号通路 | 减少细胞侵袭、肿瘤发生、血管 生成 |
BCL-W, BCL-XL | 诊断 | [
|
| miRNA-125b | ↓ | Wnt/β catenein信号通路 | 减少细胞迁移、侵袭 | APC, β-catenin | 诊断 | [
|
| miRNA-199b | ↓ | Akt信号通路 | 诱导EMT、侵袭、转移 | N-cadherin, TGF-β1 | 诊断 | [
|
| miRNA-155 | ↑ | Wnt/β catenein信号通路,JAK/STAT信号通路 | 增强增殖、肿瘤发生 | KLF-4, SOCS1, ARID2 | 诊断 预后 |
[
|
| miRNA-221 | ↑ | PI3K/AKT/mTOR信号通路、TP53信号通路 | 促进细胞增殖、存活 | RB1, BMF, PTEN | 诊断 预后 |
[
|
| miRNA-21 | ↑ | PI3K/AKT/mTOR信号通路 | 促进肝细胞迁移、侵袭、血管生成 | PTEN, WNT | 预后 | [
|
| miRNA-25 | ↑ | TP53信号通路,TGF-β肿瘤抑制信号通路 | 诱导EMT并促进转移 | BID, RhoGDI1 | 预后 | [
|
| miRNA-125a | ↓ | PI3K/AKT/mTOR信号通路 | 调节VEGF-A的表达 | c-Raf, MMP11, SIRT7, VEGF-A | 预后 | [
|
| miRNA-487a | ↑ | PIK3R1介导的AKT信号通路 | 促进增殖 | SPRED2, PIK3R1 | 预后 | [
|
| miRNA-500a | ↑ | Wnt/β-catenin信号通路 | 抑制细胞凋亡、诱导进展 | BID, SFPR2, GSK-3β | 预后 | [
|
| miRNA-638 | ↓ | JAK/STAT信号通路 | 减少细胞增殖、迁移 | SOX2 | 预后 | [
|
| miRNA-940 | ↓ | PI3K-PKB/Akt信号通路 | 减少细胞侵袭、迁移 | CXCR2 | 预后 | [
|
| [1] | SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J].CA Cancer J Clin,2024,74(1):12-49. doi:10.3322/caac.v74.1URL |
| [2] | VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J].Lancet,2022,400(10360):1345-1362. doi:10.1016/S0140-6736(22)01200-4pmid:36084663 |
| [3] | EL-SERAG H B. Epidemiology of viral hepatitis and hepatocellular carcinoma[J].Gastroenterology,2012,142(6):1264-1273.e1. doi:10.1053/j.gastro.2011.12.061URL |
| [4] | KOKUDO N, TAKEMURA N, HASEGAWA K, et al. Clinical practice guidelines for hepatocellular carcinoma: The Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update[J].Hepatol Res,2019,49(10):1109-1113. doi:10.1111/hepr.13411pmid:31336394 |
| [5] | TOMASI T B JR. Structure and function of alpha-fetoprotein[J].Annu Rev Med,1977,28:453-465. pmid:67821 |
| [6] | FARINATI F, MARINO D, DE GIORGIO M, et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: both or neither?[J].Am J Gastroenterol,2006,101(3):524-532. doi:10.1111/j.1572-0241.2006.00443.xpmid:16542289 |
| [7] | SAITTA C, RAFFA G, ALIBRANDI A, et al. PIVKA-Ⅱ is a useful tool for diagnostic characterization of ultrasound-detected liver nodules in cirrhotic patients[J].Medicine (Baltimore),2017,96(26):e7266. doi:10.1097/MD.0000000000007266URL |
| [8] | SCHIEVING J H, DE VRIES M, VAN VUGT J M, et al. Alpha-fetoprotein, a fascinating protein and biomarker in neurology[J].Eur J Paediatr Neurol,2014,18(3):243-248. doi:10.1016/j.ejpn.2013.09.003URL |
| [9] | LIEBMAN H A, FURIE B C, TONG M J, et al. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma[J].N Engl J Med,1984,310(22):1427-1431. doi:10.1056/NEJM198405313102204URL |
| [10] | FENG H, LI B, LI Z, et al. PIVKA-Ⅱ serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma.BMC Cancer.2021;21(1):401. doi:10.1186/s12885-021-08138-3 |
| [11] | LI C, ZHANG Z, ZHANG P, et al. Diagnostic accuracy of des-gamma-carboxy prothrombin versus α-fetoprotein for hepatocellular carcinoma: A systematic review[J].Hepatol Res,2014,44(10):E11-E25. |
| [12] | YU R, TAN Z, XIANG X, et al. Effectiveness of PIVKA-Ⅱ in the detection of hepatocellular carcinoma based on real-world clinical data[J].BMC Cancer,2017,17(1):608. doi:10.1186/s12885-017-3609-6 |
| [13] | KIM D Y, PAIK Y H, AHN S H, et al. PIVKA-Ⅱ is a useful tumor marker for recurrent hepatocellular carcinoma after surgical resection[J].Oncology,2007,72 Suppl 1:52-57. |
| [14] | KAIBORI M, MATSUI Y, YANAGIDA H, et al. Positive status of alpha-fetoprotein and des-gamma-carboxy prothrombin: important prognostic factor for recurrent hepatocellular carcinoma[J].World J Surg,2004,28(7):702-707. pmid:15185000 |
| [15] | CONCHIE J, HAY A J. Mammalian glycosidases. 4. The intracellular localization of beta-galactosidase, alpha-mannosidase, beta-N-acetylglucosaminidase and alpha-L-fucosidase in mammalian tissues[J].Biochem J,1963,87(2):354-361. doi:10.1042/bj0870354URL |
| [16] | XING H, QIU H, DING X, et al. Clinical performance of α-L-fucosidase for early detection of hepatocellular carcinoma[J].Biomark Med,2019,13(7):545-555. doi:10.2217/bmm-2018-0414pmid:31140827 |
| [17] | WANG K, GUO W, LI N, et al. Alpha-1-fucosidase as a prognostic indicator for hepatocellular carcinoma followi-ng hepatectomy: a large-scale, long-term study[J].Br J Cancer,2014,110(7):1811-1819. doi:10.1038/bjc.2014.102 |
| [18] | YANG Z F, HO D W, NG M N, et al. Significance of CD90+ cancer stem cells in human liver cancer[J].Cancer Cell,2008,13(2):153-166. doi:10.1016/j.ccr.2008.01.013pmid:18242515 |
| [19] | LIU S, LI N, YU X, et al. Expression of intercellular adhesion molecule 1 by hepatocellular carcinoma stem cells and circulating tumor cells[J].Gastroenterology,2013,144(5):1031-1041.e10. doi:10.1053/j.gastro.2013.01.046pmid:23376424 |
| [20] | WANG S, ZHANG C, WANG G, et al. Aptamer-mediated transparent-biocompatible nanostructured surfaces for hepotocellular circulating tumor cells enrichment[J].Theranostics,2016,6(11):1877-1886. doi:10.7150/thno.15284pmid:27570557 |
| [21] | QI L N, XIANG B D, WU F X, et al. Circulating tumor cells undergoing emt provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma[J].Cancer Res,2018,78(16):4731-4744. |
| [22] | SUN Y F, WU L, LIU S P, et al. Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma[J].Nat Commun,2021,12(1):4091. doi:10.1038/s41467-021-24386-0 |
| [23] | SAUSEN M, PARPART S, DIAZ L A JR. Circulating tumor DNA moves further into the spotlight[J].Genome Med,2014,6(5):35. doi:10.1186/gm552pmid:24944584 |
| [24] | VAN DER POL Y, MOULIERE F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA[J].Cancer Cell,2019,36(4):350-368. doi:S1535-6108(19)30386-1pmid:31614115 |
| [25] | CHEN L, ABOU-ALFA G K, ZHENG B, et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients[J].Cell Res,2021,31(5):589-592. doi:10.1038/s41422-020-00457-7pmid:33589745 |
| [26] | DING Y, YAO J, WEN M, et al. The potential, analysis and prospect of ctDNA sequencing in hepatocellular carcinoma[J].PeerJ,2022,10:e13473. doi:10.7717/peerj.13473URL |
| [27] | XU R H, WEI W, KRAWCZYK M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma[J].Nat Mater,2017,16(11):1155-1161. doi:10.1038/nmat4997URL |
| [28] | ZHANG B O, XU C W, SHAO Y, et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation[J].Exp Ther Med,2015,9(4):1383-1388. doi:10.3892/etm.2015.2221URL |
| [29] | HA M, KIM V N. Regulation of microRNA biogenesis[J].Nat Rev Mol Cell Biol,2014,15(8):509-524. doi:10.1038/nrm3838 |
| [30] | LU J, GETZ G, MISKA E A, et al. MicroRNA expression profiles classify human cancers[J].Nature,2005,435(7043):834-838. doi:10.1038/nature03702 |
| [31] | CHEN X, BA Y, MA L, et al. Characterization of micro-RNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J].Cell Res,2008,18(10):997-1006. doi:10.1038/cr.2008.282 |
| [32] | FORNARI F, GRAMANTIERI L, GIOVANNINI C, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells[J].Cancer Res,2009,69(14):5761-5767. doi:10.1158/0008-5472.CAN-08-4797pmid:19584283 |
| [33] | COULOUARN C, FACTOR V M, ANDERSEN J B, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties[J].Oncogene,2009,28(40):3526-3536. doi:10.1038/onc.2009.211pmid:19617899 |
| [34] | ASHMAWY A M, ELGESHY K M, ABDEL SALAM E T, et al. Crosstalk between liver-related microRNAs and Wnt/β-catenin pathway in hepatocellular carcinoma patients[J].Arab J Gastroenterol,2017,18(3):144-150. doi:S1687-1979(17)30074-6pmid:28958640 |
| [35] | ZHOU S J, LIU F Y, ZHANG A H, et al. MicroRNA-199b-5p attenuates TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J].Br J Cancer,2017,117(2):233-244. doi:10.1038/bjc.2017.164URL |
| [36] | YAN X L, JIA Y L, CHEN L, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis[J].Hepatology,2013,57(6):2274-2286. doi:10.1002/hep.26257URL |
| [37] | MORISHITA A, OURA K, TADOKORO T, et al. Micro-RNAs in the pathogenesis of hepatocellular carcinoma: a review[J].Cancers (Basel),2021,13(3):514. doi:10.3390/cancers13030514URL |
| [38] | CALLEGARI E, GRAMANTIERI L, DOMENICALI M, et al. MicroRNAs in liver cancer: a model for investiga-ting pathogenesis and novel therapeutic approaches[J].Cell Death Differ,2015,22(1):46-57. doi:10.1038/cdd.2014.136 |
| [39] | ZHANG T, YANG Z, KUSUMANCHI P, et al. Critical role of microRNA-21 in the pathogenesis of liver diseases[J].Front Med (Lausanne),2020,7:7. |
| [40] | WANG C, WANG X, SU Z, et al. MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI[J].Oncotarget,2015,6(34):36231-36244. doi:10.18632/oncotarget.v6i34URL |
| [41] | TANG H, LI R P, LIANG P, et al. miR-125a inhibits the migration and invasion of liver cancer cells via suppression of the PI3K/AKT/mTOR signaling pathway[J].Oncol Lett,2015,10(2):681-686. pmid:26622553 |
| [42] | COPPOLA N, DE STEFANO G, PANELLA M, et al. Lowered expression of microRNA-125a-5p in human hepatocellular carcinoma and up-regulation of its oncogenic targets sirtuin-7, matrix metalloproteinase-11, and c-Raf[J].Oncotarget,2017,8(15):25289-25299. doi:10.18632/oncotarget.15809pmid:28445974 |
| [43] | BI Q, TANG S, XIA L, et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF[J].PLoS One,2012,7(6):e40169. doi:10.1371/journal.pone.0040169URL |
| [44] | CHANG R M, XIAO S, LEI X, et al. miRNA-487a promotes proliferation and metastasis in hepatocellular carcinoma[J].Clin Cancer Res,2017,23(10):2593-2604. doi:10.1158/1078-0432.CCR-16-0851URL |
| [45] | BAO L, ZHANG M, HAN S, et al. MicroRNA-500a promotes the progression of hepatocellular carcinoma by post-transcriptionally targeting BID[J].Cell Physiol Biochem,2018,47(5):2046-2055. doi:10.1159/000491472pmid:29969781 |
| [46] | GUO Y, CHEN L, SUN C, et al. MicroRNA-500a promotes migration and invasion in hepatocellular carcinoma by activating the Wnt/β-catenin signaling pathway[J].Biomed Pharmacother,2017,91:13-20. doi:S0753-3322(17)30210-Xpmid:28437633 |
| [47] | ZHANG Y, ZHANG D, JIANG J, et al. Loss of miR-638 promotes invasion and epithelial-mesenchymal transition by targeting SOX2 in hepatocellular carcinoma[J].Oncol Rep,2017,37(1):323-332. doi:10.3892/or.2016.5273pmid:27878280 |
| [48] | DING D, ZHANG Y, YANG R, et al. miR-940 suppresses tumor cell invasion and migration via regulation of CXCR2 in hepatocellular carcinoma[J].Biomed Res Int,2016,2016:7618342. |
| [49] | LIU A M, YAO T J, WANG W, et al. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study[J].BMJ Open,2012,2(2):e000825. doi:10.1136/bmjopen-2012-000825URL |
| [50] | AMR K S, ELMAWGOUD ATIA H A, ELAZEEM ELBNHAWY R A, et al. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma[J].Genes Dis,2017,4(4):215-221. doi:10.1016/j.gendis.2017.10.003pmid:30258925 |
| [51] | XU J, WU C, CHE X, et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis[J].Mol Carcinog,2011,50(2):136-142. doi:10.1002/mc.20712URL |
| [52] | KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977. doi:10.1126/science.aau6977URL |
| [53] | NABET B Y, QIU Y, SHABASON J E, et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer[J].Cell,2017,170(2):352-366.e13. doi:S0092-8674(17)30715-8pmid:28709002 |
| [54] | THÉRY C. Cancer: Diagnosis by extracellular vesicles[J].Nature,2015,523(7559):161-162. doi:10.1038/nature14626 |
| [55] | LU Y, DUAN Y, XU Q, et al. Circulating exosome-derived bona fide long non-coding RNAs predicting the occurrence and metastasis of hepatocellular carcinoma[J].J Cell Mol Med,2020,24(2):1311-1318. doi:10.1111/jcmm.14783pmid:31811749 |
| [56] | CONIGLIARO A, COSTA V, LO DICO A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA[J].Mol Cancer,2015,14:155. doi:10.1186/s12943-015-0426-xpmid:26272696 |
| [57] | SUN N, LEE Y T, ZHANG R Y, et al. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring[J].Nat Commun,2020,11(1):4489. doi:10.1038/s41467-020-18311-0pmid:32895384 |
| [58] | LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J].Nat Rev Dis Primers,2021,7(1):6. doi:10.1038/s41572-020-00240-3pmid:33479224 |
| [59] | SCHULZE K, IMBEAUD S, LETOUZÉ E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J].Nat Genet,2015,47(5):505-511. doi:10.1038/ng.3252pmid:25822088 |
| [60] | GUICHARD C, AMADDEO G, IMBEAUD S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma[J].Nat Genet,2012,44(6):694-698. doi:10.1038/ng.2256pmid:22561517 |
| [61] | LIU X, XIAO C, YUE K, et al. Identification of multi-o-mics biomarkers and construction of the novel prognostic model for hepatocellular carcinoma[J].Sci Rep,2022,12(1):12084. doi:10.1038/s41598-022-16341-w |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||
