
Journal of Diagnostics Concepts & Practice››2022,Vol. 21››Issue (01): 41-45.doi:10.16150/j.1671-2870.2022.01.009
• Original articles •Previous ArticlesNext Articles
MA Shaochen1,2, GUO Xin1,2, WANG Mingwei1,2, WANG Huijun1,2, YU Qijun3, SU Wenyue3, WANG Hualong1,2, MA Qinying1
Online:2022-02-25Published:2022-02-25CLC Number:
MA Shaochen, GUO Xin, WANG Mingwei, WANG Huijun, YU Qijun, SU Wenyue, WANG Hualong, MA Qinying. Effect of game-based EEG neurofeedback training on improvement of cognitive function[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(01): 41-45.
| 量表 | 认知领域 | 认知功能障碍患者(n=49) | |||
|---|---|---|---|---|---|
| 训练前(
|
训练后(
|
t值 | P值 | ||
| MMSE | 定向力 | 8.69±1.28 | 9.43±1.25 | -4.335 | <0.001 |
| 即刻回忆 | 2.90±0.31 | 2.94±0.24 | -1.000 | 0.322 | |
| 注意力和计算力 | 2.92±0.98 | 3.73±1.26 | -6.157 | <0.001 | |
| 回忆 | 1.55±0.77 | 2.16±0.80 | -5.12 | <0.001 | |
| 语言 | 7.04±1.27 | 7.80±1.08 | -5.715 | <0.001 | |
| MMSE总分 | 23.10±2.82 | 26.06±2.95 | -17.163 | <0.001 | |
| MoCA | 视空间与执行功能 | 3.43±1.02 | 3.65±1.01 | -1.909 | 0.062 |
| 命名 | 2.29±0.71 | 2.49±0.65 | -2.478 | 0.017 | |
| 注意 | 4.24±1.41 | 5.02±1.22 | -5.093 | <0.001 | |
| 语言 | 1.43±0.76 | 1.86±0.74 | -3.795 | <0.001 | |
| 抽象 | 0.80±0.76 | 1.02±0.80 | -2.529 | 0.015 | |
| 延迟回忆 | 1.33±1.28 | 2.29±1.34 | -6.221 | <0.001 | |
| 定向 | 5.12±1.01 | 5.55±0.87 | -3.464 | <0.001 | |
| MoCA总分 | 18.63±4.10 | 21.88±3.94 | -11.098 | <0.001 | |
| ADAS-cog | 单词回忆 | 4.35±1.11 | 3.93±1.30 | 3.891 | <0.001 |
| 命名 | 0.33±0.47 | 0.08±0.28 | 3.946 | <0.001 | |
| 命令 | 1.29±0.71 | 1.37±0.83 | -0.753 | 0.455 | |
| 结构性练习 | 0.53±0.50 | 0.35±0.52 | 2.438 | 0.019 | |
| 意向性练习 | 0.53±0.58 | 0.12±0.39 | 5.322 | <0.001 | |
| 定向 | 0.94±0.94 | 0.47±0.868 | 3.892 | <0.001 | |
| 单词辨认 | 2.33±1.675 | 1.59±1.338 | 5.183 | <0.001 | |
| 回忆测验指令 | 1.12±0.949 | 1.04±0.87 | 1.000 | 0.322 | |
| 口语能力 | 0.63±0.76 | 0.61±0.70 | 0.573 | 0.569 | |
| 找词困难 | 0.51±0.79 | 0.53±0.77 | -0.330 | 0.743 | |
| 语言理解力 | 0.94±0.78 | 0.90±0.71 | 0.531 | 0.598 | |
| 注意力 | 1.27±0.73 | 1.06±0.83 | 1.400 | 0.168 | |
| ADAS-cog总分 | 14.76±5.30 | 12.15±5.15 | 16.056 | <0.001 | |
| [1] | 中国痴呆与认知障碍指南写作组, 中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(一):痴呆及其分类诊断标准[J]. 中华医学杂志, 2018, 98(13):965-970. |
| Chinese dementia and cognitive impairment guideline writing group, Committee of cognitive impairment neurologist branch of Chinese Medical Association. 2018 Chinese guidelines for the diagnosis and treatment of dementia and cognitive impairment(I): dementia and its classification and diagnostic criteria[J]. Chin J Med, 2018, 98(13):965-970. | |
| [2] | Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health. 2020 Dec; 5(12):e661-e671. doi:10.1016/S2468-2667(20)30185-7URL |
| [3] | Brenner EK, Hampstead BM, Grossner EC, et al. Dimini-shed neural network dynamics in amnestic mild cognitive impairment[J]. Int J Psychophysiol, 2018, 130:63-72. doi:S0167-8760(17)30693-1pmid:29738855 |
| [4] | Tan G, Thornby J, Hammond DC, et al. Meta-analysis of EEG biofeedback in treating epilepsy[J]. Clin EEG Neurosci, 2009, 40(3):173-179. doi:10.1177/155005940904000310URL |
| [5] | Sonuga-Barke EJ, Brandeis D, Cortese S, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments[J]. Am J Psychiatry, 2013, 170(3):275-289. doi:10.1176/appi.ajp.2012.12070991URL |
| [6] | Surmeli T, Eralp E, Mustafazade I, et al. Quantitative EEG Neurometric Analysis-Guided Neurofeedback Treatment in Dementia: 20 Cases. How Neurometric Analysis Is Important for the Treatment of Dementia and as a Biomarker?[J]. Clin EEG Neurosci, 2016, 47(2):118-133. doi:10.1177/1550059415590750pmid:26099949 |
| [7] | 李昕, 张洁, 史春燕. 意念力游戏训练改善脑认知功能状态研究[J]. 生物医学工程学杂志, 2019, 36(3):364-370,378. |
| Li X, Zhang J, Shi C Y. Study on the improvement of brain cognitive function by mental game training[J]. J Biomed Eng, 2019, 36(3):364-370,378. | |
| [8] | Gallego-Jutglà E, Solé-Casals J, Vialatte FB, et al. A theta-band EEG based index for early diagnosis of Alzheimer′s disease[J]. J Alzheimers Dis, 2015, 43(4):1175-1184. doi:10.3233/JAD-140468pmid:25147104 |
| [9] | Babiloni C, Lizio R, Del Percio C, et al. Cortical sources of resting state EEG rhythms are sensitive to the progression of early stage Alzheimer′s disease[J]. J Alzheimers Dis, 2013, 34(4):1015-1035. doi:10.3233/JAD-121750pmid:23340039 |
| [10] | Höller Y, Bathke AC, Uhl A, et al. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms[J]. Front Aging Neurosci, 2017, 9:290. doi:10.3389/fnagi.2017.00290URL |
| [11] | Cecchetti G, Agosta F, Basaia S, et al. Resting-state electroencephalographic biomarkers of Alzheimer′s disease[J]. Neuroimage Clin, 2021, 31:102711. doi:10.1016/j.nicl.2021.102711URL |
| [12] | Musaeus CS, Engedal K, Høgh P, et al. EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer′s Disease[J]. J Alzheimers Dis, 2018, 64(4):1359-1371. doi:10.3233/JAD-180300URL |
| [13] | Roh JH, Park MH, Ko D, et al. Region and frequency specific changes of spectral power in Alzheimer′s disease and mild cognitive impairment[J]. Clin Neurophysiol, 2011, 122(11):2169-2176. doi:10.1016/j.clinph.2011.03.023URL |
| [14] | Babiloni C, Carducci F, Lizio R, et al. Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer′s disease[J]. Hum Brain Mapp, 2013, 34(6):1427-1446. doi:10.1002/hbm.22005pmid:22331654 |
| [15] | Babiloni C, Blinowska K, Bonanni L, et al. What electrophysiology tells us about Alzheimer′s disease: a window into the synchronization and connectivity of brain neurons[J]. Neurobiol Aging, 2020, 85:58-73. doi:S0197-4580(19)30329-Xpmid:31739167 |
| [16] | Lavy Y, Dwolatzky T, Kaplan Z, et al. Neurofeedback Improves Memory and Peak Alpha Frequency in Individuals with Mild Cognitive Impairment[J]. Appl Psychophysiol Biofeedback, 2019, 44(1):41-49. doi:10.1007/s10484-018-9418-0URL |
| [17] | Lavy Y, Dwolatzky T, Kaplan Z, et al. Mild Cognitive Impairment and Neurofeedback: A Randomized Controlled Trial[J]. Front Aging Neurosci, 2021, 13:657646. doi:10.3389/fnagi.2021.657646URL |
| [18] | Jirayucharoensak S, Israsena P, Pan-Ngum S, et al. A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment[J]. Clin Interv Aging, 2019, 14:347-360. doi:10.2147/CIA.S189047pmid:30863028 |
| [19] | Mahato S, Paul S. Detection of major depressive disorder using linear and non-linear features from EEG signals[J]. Microsystem Technologies, 2019:1065-1076. |
| [20] | Dauwels J, Srinivasan K, Ramasubba Reddy M, et al. Slowing and Loss of Complexity in Alzheimer′s EEG: Two Sides of the Same Coin?[J]. Int J Alzheimers Dis, 2011, 2011:539621. |
| [21] | 祝本菊, 陈旭. 轻度认知功能障碍患者的脑电复杂度分析[J]. 中华老年心脑血管病杂志, 2017, 19(11):1129-1132. |
| Zhu B J, Chen X. Analysis of EEG complexity in patients with mild cognitive impairment[J]. Chin J Geriatr Cardiovasc Cerebrovasc Dis, 2017, 19(11):1129-1132. |
| [1] | SUN Jialan, HUANG Shu, LAI Xiaoyin, ZHU Wei, HU Rongguo, LI Longxuan.Correlation between lymphocyte G-protein-coupled receptor kinase-5 level and cognitive impairment in patients with Alzheimer′s disease[J]. Journal of Diagnostics Concepts & Practice, 2018, 17(04): 419-422. |
| [2] | .[J]. Journal of Diagnostics Concepts & Practice, 2014, 13(04): 416-418. |
| [3] | .[J]. Journal of Diagnostics Concepts & Practice, 2013, 12(03): 264-268. |
| [4] | .[J]. Journal of Diagnostics Concepts & Practice, 2009, 8(04): 376-379. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||