
Journal of Diagnostics Concepts & Practice››2020,Vol. 19››Issue (04): 407-413.doi:10.16150/j.1671-2870.2020.04.016
• Original articles •Previous ArticlesNext Articles
GAO Yanting, ZHAO Jinyan, WANG Juan, LI Jia, XU Wen, LI Li, LIN Lihui(
)
Received:2020-04-22Online:2020-08-25Published:2022-07-15Contact:LIN Lihui E-mail:linlihui2014@126.comCLC Number:
GAO Yanting, ZHAO Jinyan, WANG Juan, LI Jia, XU Wen, LI Li, LIN Lihui. Analysis of bone marrow lymphocyte subsets in patients with acute myeloid leukemia and its clinical significance[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(04): 407-413.
| 分组 | 初诊AML | 继发AML(n=18) | 复发AML(n=19) | ||
|---|---|---|---|---|---|
| 低危组(n=36) | 中危组(n=27) | 高危组(n=31) | |||
| 性别(女/男) | 14/22 | 11/16 | 12/19 | 8/10 | 4/15 |
| 中位年龄(岁) | 53(18~77) | 38(26~68) | 54(25~72) | 53(33~78) | 48(17~70) |
| 融合基因 | |||||
| RUNX1-RUNX1T1 | 6(16.67%) | 1(5.26%) | |||
| KMT2A重排 | 2(6.45%) | 3(15.79%) | |||
| CBFB-MYH11 | 7(19.44%) | 3(15.79%) | |||
| 突变基因 | |||||
| NPM1 | 14(38.89%) | 1(3.70%) | 2(6.45%) | 1(5.26%) | |
| NPM1突变伴低水平FLT3-ITD | 2(5.56%) | 1(3.23%) | |||
| NPM突变伴高水平FLT3-ITD | 1(3.70%) | 1(3.23%) | |||
| 野生型NPM1伴低水平FLT3-ITD | 4(14.81%) | 4(12.90%) | 2(10.53%) | ||
| 野生型NPM1伴高水平FLT3-ITD | 1(3.23%) | ||||
| CEBPA双突变 | 9(25.00%) | ||||
| RUNX1 | 2(5.56%) | 7(22.58%) | 1(5.56%) | 2(10.53%) | |
| ASXL1 | 9(25.00%) | 21(67.74%) | 10(55.56%) | 2(10.53%) | |
| TP53 | 5(16.13%) | 5(27.78%) | 2(10.53%) | ||
| [1] | Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia[J]. N Engl J Med, 2015, 373(12):1136-1152. doi:10.1056/NEJMra1406184URL |
| [2] | Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, et al. The global burden of cancer 2013[J]. JAMA Oncol, 2015, 1(4):505-527. doi:10.1001/jamaoncol.2015.0735pmid:26181261 |
| [3] | Song X, Peng Y, Wang X, et al. Incidence, survival, and risk factors for adults with acute myeloid leukemia not otherwise specified and acute myeloid leukemia with recurrent genetic abnormalities: analysis of the surveillance, epidemiology, and end results (SEER) database, 2001-2013[J]. Acta Haematol, 2018, 139(2):115-127. doi:10.1159/000486228URL |
| [4] | Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology[J]. Cancer, 2006, 107(9):2099-2107. pmid:17019734 |
| [5] | Institute NC. Cancer Stat Facts: Leukemia-Acute Myeloid Leukemia(AML)[DB/OL]. 2017 [2020-04-22]. https://seer.cancer.gov/statfacts/html/alyl.html. |
| [6] | Le Dieu R, Taussig DC, Ramsay AG, et al. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts[J]. Blood, 2009, 114(18):3909-3916. |
| [7] | Paczulla AM, Rothfelder K, Raffel S, et al. Absence of NKG2D ligands defines leukaemia stem cells and media-tes their immune evasion[J]. Nature, 2019, 572(7768):254-259. doi:10.1038/s41586-019-1410-1URL |
| [8] | Raulet DH, Gasser S, Gowen BG, et al. Regulation of li-gands for the NKG2D activating receptor[J]. Annu Rev Immunol, 2013, 31:413-441. doi:10.1146/annurev-immunol-032712-095951pmid:23298206 |
| [9] | Goswami M, Prince G, Biancotto A, et al. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy[J]. J Transl Med, 2017, 15(1):155. doi:10.1186/s12967-017-1252-2URL |
| [10] | Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-a Europe Against Cancer program[J]. Leukemia, 2003, 17(12):2318-2357. doi:10.1038/sj.leu.2403135pmid:14562125 |
| [11] | Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)-a Europe against cancer program[J]. Leukemia, 2003, 17(12):2474-2486. pmid:14562124 |
| [12] | Duncavage EJ, Abel HJ, Szankasi P, et al. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia[J]. Mod Pathol, 2012, 25(6):795-804. doi:10.1038/modpathol.2012.29URL |
| [13] | Luthra R, Patel KP, Reddy NG, et al. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring[J]. Haematologica, 2014, 99(3):465-473. doi:10.3324/haematol.2013.093765URL |
| [14] | Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405. doi:10.1182/blood-2016-03-643544URL |
| [15] | Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood, 2017, 129(4):424-447. doi:10.1182/blood-2016-08-733196URL |
| [16] | Oetjen KA, Lindblad KE, Goswami M, et al. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry[J]. JCI Insight, 2018, 3(23):e124928. doi:10.1172/jci.insight.124928URL |
| [17] | 黄方, 郝思国. 急性髓系白血病患者外周血T淋巴细胞亚群的水平变化及临床意义[J]. 第二军医大学学报, 2020, 41(5):546-550. |
| [18] | 杨莉, 何浩明. 急性髓细胞白血病患者外周血淋巴细胞亚群的检验分析[J]. 国际检验医学杂志, 2016, 37(6):817-819. |
| [19] | 晁丹阳. 68例急性髓细胞白血病患者淋巴细胞亚群的变化分析[J]. 临床医学, 2017, 37(10):66-68. |
| [20] | Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia[J]. Crit Rev Oncol Hematol, 2016, 103:62-77. doi:10.1016/j.critrevonc.2016.04.020URL |
| [21] | Williams P, Basu S, Garcia-Manero G, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia[J]. Cancer, 2019, 125(9):1470-1481. doi:10.1002/cncr.31896pmid:30500073 |
| [22] | Bozzano F, Perrone C, Moretta L, et al. NK cell precursors in human bone marrow in health and inflammation[J]. Front Immunol, 2019, 10:2045. doi:10.3389/fimmu.2019.02045URL |
| [23] | Ribeiro VS, Hasan M, Wilson A, et al. Cutting edge: Thymic NK cells develop independently from T cell precursors[J]. J Immunol, 2010, 185(9):4993-4997. doi:10.4049/jimmunol.1002273pmid:20889548 |
| [24] | Vargas CL, Poursine-Laurent J, Yang L, et al. Development of thymic NK cells from double negative 1 thymocyte precursors[J]. Blood, 2011, 118(13):3570-3578. |
| [25] | Freud AG, Yu J, Caligiuri MA. Human natural killer cell development in secondary lymphoid tissues[J]. Semin Immunol, 2014, 26(2):132-137. doi:10.1016/j.smim.2014.02.008URL |
| [26] | Jia B, Wang L, Claxton DF, et al. Bone marrow CD8 T cells express high frequency of PD-1 and exhibit reduced anti-leukemia response in newly diagnosed AML patients[J]. Blood Cancer J, 2018, 8(3):34. doi:10.1038/s41408-018-0069-4URL |
| [27] | Knaus HA, Berglund S, Hackl H, et al. Signatures of CD8+T cell dysfunction in AML patients and their reversibility with response to chemotherapy[J]. JCI Insight, 2018, 3(21):e120974. doi:10.1172/jci.insight.120974URL |
| [1] | PENG Zhenping, XIANG Xixi, ZHANG Sujiang, LI Jiaming.Chronic neutrophilic leukemia with leukemia-like reaction as the first-onset manifestation: a report of 2 cases and literature review[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 122-128. |
| [2] | LAI Xiaoyin, SUN Jialan, HU Rongguo, YANG Xuelian, WU Guolu, LI Longxuan, BU Bitao.Correlation between imbalance of T lymphocyte subsets and symptom fluctuation in patients with myasthenia gravis[J]. Journal of Diagnostics Concepts & Practice, 2019, 18(2): 199-203. |
| [3] | WANG Shu, ZHANG Yunxiang, SUI Jingni, LU Jing, FAN Huiyong, WANG Chao, CHEN Bing..Analysis of additional mutation pattern accompanied withCEBPAmutations in patients with the cytogenetically normal acute myeloid leukemia[J]. Journal of Diagnostics Concepts & Practice, 2017, 16(05): 498-503. |
| [4] | ZHU Jianyi, LANG Wenjing, CHEN Fangyuan, XU Zhuoran, SHEN Lijing, ZHONG Jihua.Effect of arsenic trioxide on EVI1 gene in regulating hematopoietic transcription factorsin vitro[J]. Journal of Diagnostics Concepts & Practice, 2017, 16(01): 42-47. |
| [5] | .[J]. Journal of Diagnostics Concepts & Practice, 2016, 15(03): 226-230. |
| [6] | .[J]. Journal of Diagnostics Concepts & Practice, 2015, 14(04): 363-366. |
| [7] | .[J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 246-250. |
| [8] | .[J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 325-328. |
| [9] | .[J]. Journal of Diagnostics Concepts & Practice, 2013, 12(03): 304-308. |
| [10] | .[J]. Journal of Diagnostics Concepts & Practice, 2012, 11(02): 141-144. |
| [11] | .[J]. Journal of Diagnostics Concepts & Practice, 2011, 10(05): 434-439. |
| [12] | .[J]. Journal of Diagnostics Concepts & Practice, 2011, 10(03): 239-242. |
| [13] | .[J]. Journal of Diagnostics Concepts & Practice, 2010, 9(05): 498-502. |
| [14] | .[J]. Journal of Diagnostics Concepts & Practice, 2010, 9(04): 311-315. |
| [15] | .[J]. Journal of Diagnostics Concepts & Practice, 2006, 5(05): 401-403. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||