
诊断学理论与实践››2022,Vol. 21››Issue (04): 470-475.doi:10.16150/j.1671-2870.2022.04.009
徐程1, 徐欣欣1, 田烨2, 范嘉盈2, 宋珍2, 杨玲1,3(
)
收稿日期:2021-09-18出版日期:2022-08-25发布日期:2022-11-07通讯作者:杨玲 E-mail:yangling01@xinhuamed.com.cn基金资助:
XU Cheng1, XU Xinxin1, TIAN Ye2, FAN Jiaying2, SONG Zhen2, YANG Ling1,3(
)
Received:2021-09-18Online:2022-08-25Published:2022-11-07Contact:YANG Ling E-mail:yangling01@xinhuamed.com.cn摘要:
目的:观察下呼吸道流感嗜血杆菌定植对哮喘小鼠气道炎症和免疫失衡的影响,并研究其信号通路。方法:32只C57BL/6野生型(wild type,WT)和32只Toll样受体4(,TLR4)基因敲除(TLR4-/-)小鼠为实验对象,其中C57BL/6 WT小鼠,随机分为对照(NC)组和哮喘(AC)组、注菌(NS)组、哮喘注菌(AS)组4组,每组8只。32只TLR4-/-小鼠处理及分组同上。对AC组、AS组,分别用卵清蛋白(ovalbumin,OVA)致敏和激发,制备慢性哮喘小鼠模型;对NS、AS组,方经气道注入流感嗜血杆菌琼脂菌珠,制备气道定植菌模型。采用酶联免疫吸附法检测小鼠血清中IL-17、IL-10水平,用流式细胞仪检测小鼠脾脏单个核细胞中Th17、Treg及TLR4+细胞数,并进行三者相关性分析。结果:C57BL/6 WT小鼠中,与AC组、NS组和NC组相比,AS组IL-17水平、IL-17/IL-10比值、Th17、Th17/Treg比值、TLR4+细胞水平升高,IL-10、Treg降低,提示下呼吸道流感嗜血杆菌定植加重了哮喘小鼠的气道炎症和免疫失衡。与C57BL/6 WT的AS小鼠相比,TLR4-/-小鼠的AS组IL-17、IL-17/IL-10比值、Th17、Th17/Treg比值、TLR4+细胞降低,IL-10水平、Treg数升高,说明下呼吸道流感嗜血杆菌定植对气道的影响可能是通过TLR4通路来调控。脾脏单个核细胞中,表达TLR4的CD4+T淋巴细胞比例与Th17比例呈正相关(r=0.912,P<0.05),而与Treg细胞比例呈负相关(r=0.689,P<0.05)。下呼吸道流感嗜血杆菌气道定植后,可能是通过TLR4影响Th17和Treg的平衡来影响免疫平衡。结论:下呼吸道流感嗜血杆菌定植可能通过TLR4的信号转导加重哮喘小鼠的免疫失衡,进而参与了哮喘病情的进展。
中图分类号:
徐程, 徐欣欣, 田烨, 范嘉盈, 宋珍, 杨玲. 下呼吸道流感嗜血杆菌定植通过Toll样受体4影响哮喘小鼠免疫失衡[J]. 诊断学理论与实践, 2022, 21(04): 470-475.
XU Cheng, XU Xinxin, TIAN Ye, FAN Jiaying, SONG Zhen, YANG Ling. Effect ofHaemophilusinfluenzae colonizing in lower respiratory tract on immune imbalance through TLR4 signaling pathway in asthmatic mice[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 470-475.
表1
血清 IL-17、IL-10、IL-10/IL-17变化(n=8,$\bar{x}±s$)
| 指标 | WT | TLR4-/- | t值 | P值 |
|---|---|---|---|---|
| IL-17(pg/mL) | ||||
| NC组 | 5.58±1.10 | 5.89±1.41 | -2.123 | 0.087 |
| NS组 | 4.09±2.08 | 5.96±1.82 | -6.623 | 0.061 |
| AC组 | 23.96±4.86a | 16.49±5.14a | -2.030 | 0.098 |
| AS组 | 58.55±15.84a,b | 24.19±10.07a,b,c | 3.438 | 0.018 |
| F值 | 16.305 | 13.276 | ||
| P值 | 0.000 | 0.000 | ||
| IL-10(pg/mL) | ||||
| NC组 | 199.55±83.00 | 590.66±37.29c | -3.150 | 0.025 |
| NS组 | 165.00±48.00 | 401.69±122.63c | -3.625 | 0.015 |
| AC组 | 80.07±33.42a | 100.61±6.61a | -0.265 | 0.801 |
| AS组 | 50.51±21.10a,b | 72.70±24.04a | 1.042 | 0.345 |
| F值 | 2.486 | 5.515 | ||
| P值 | 0.064 | 0.064 | ||
| IL-10/IL-17比值 | ||||
| NC组 | 77.20±19.23 | 84.493±11.42 | -1.273 | 0.259 |
| NS组 | 48.16±19.56 | 68.36±7.39c | -1.905 | 0.015 |
| AC组 | 6.09±1.75a | 7.99±1.88a | 4.255 | 0.108 |
| AS组 | 0.37±0.98a,b | 5.73±1.99a,c | -3.620 | 0.015 |
| F值 | 34.596 | 204.898 | ||
| P值 | 0.000 | 0.000 |
表2
脾脏单个核细胞中Th17、Treg细胞占CD4+T细胞的比例(n=8,$\bar{x}±s$)
| 指标 | WT | TLR4-/- | t值 | P值 |
|---|---|---|---|---|
| CD4+IL-17+T(%) | ||||
| NC组 | 0.03±0.07 | 0.08±0.07 | -2.252 | 0.074 |
| NS组 | 0.247±0.06 | 0.12±0.05 | 2.522 | 0.053 |
| AC组 | 0.328±0.18a | 0.21±0.14a | 2.286 | 0.071 |
| AS组 | 2.3±0.02a,b | 0.25±0.09a,c | 8.847 | 0.000 |
| F值 | 15.285 | 14.653 | ||
| P值 | <0.001 | <0.001 | ||
| CD4+CD25+Foxp3+T(%) | ||||
| NC组 | 13.33±1.34 | 12.42±0.95 | 1.083 | 0.328 |
| NS组 | 10.35±2.6 | 10.49±2.31 | -0.115 | 0.913 |
| AC组 | 9.56±0.92a | 10.51±1.00a | -1.791 | 0.133 |
| AS组 | 7.03±0.98a,b | 8.26±0.66a | -2.183 | 0.081 |
| F值 | 67.829 | 3.870 | ||
| P值 | <0.001 | 0.025 | ||
| Treg/Th17比值 | ||||
| NC组 | 88.45±6.63 | 102.62±23.05 | -1.815 | 0.129 |
| NS组 | 70.38±23.95 | 98.59±28.70 | -2.485 | 0.055 |
| AC组 | 33.94±8.94a | 48.27±12.59a | -2.529 | 0.053 |
| AS组 | 3.34±0.66a,b | 28.8±2.6a,b,c | -26.131 | 0.000 |
| F值 | 49.792 | 21.071 | ||
| P值 | <0.001 | <0.001 |
| [1] | Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010[J]. Lancet, 2012, 380(9859):2163-2196. doi:10.1016/S0140-6736(12)61729-2pmid:23245607 |
| [2] | Ding F, Liu B, Niu C, et al. Low-dose LPS induces tolerogenic treg skewing in asthma[J]. Front Immunol, 2020, 11:2150. doi:10.3389/fimmu.2020.02150pmid:33072079 |
| [3] | Huang YJ, Nelson CE, Brodie EL, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma[J]. Clin Immunol, 2011, 127(2):372-381,e1-e3. |
| [4] | 张翠翠, 温明春, 杜秀伟, 等. 难治性哮喘患者支气管肺泡灌洗液细胞分类及病原菌筛查研究[J]. 中华哮喘杂志(电子版), 2013, 7(3):15-19. |
| Zhang CC, Wen MC, Du XW, et al. Study of Cytological Classification and pathogenic bacteria screening of bronchoalveolar lavage fluid in patients with refractory asthma[J]. Chin J Asthma, 2013, 7(3):15-19. | |
| [5] | Alamri A. Diversity of microbial signatures in asthmatic airways[J]. Int J Gen Med, 2021, 14:1367-1378. doi:10.2147/IJGM.S304339pmid:33889017 |
| [6] | 康建强, 董杨阳, 杨玲, 等. 下呼吸道流感嗜血杆菌定植对哮喘小鼠气道炎症的影响及信号通路的研究[J]. 诊断学理论与实践, 2020, 19(1):44-49. |
| Kang JQ, Dong YY, Yang L, et al. Effect of Haemophilus influenzae colonizing lower respiratory tract on airway inflammation and its signaling pathway in asthmatic mice[J]. J Diagn Concepts & Pract, 2020, 19(1):44-49. | |
| [7] | Lee HY, Rhee CK, Kang JY, et al. Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma[J]. Korean J Intern Med, 2016, 31(1):89-97. doi:10.3904/kjim.2016.31.1.89pmid:26767862 |
| [8] | Kim MS, Cho KA, Cho YJ, et al. Effects of interleukin-9 blockade on chronic airway inflammation in murine asthma models[J]. Allergy Asthma Immunol Res, 2013, 5(4):197-206. doi:10.4168/aair.2013.5.4.197URL |
| [9] | Følsgaard NV, Schjørring S, Chawes BL, et al. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release[J]. Am J Respir Crit Care Med, 2013, 187(6):589-595. doi:10.1164/rccm.201207-1297OCURL |
| [10] | Diver S, Richardson M, Haldar K, et al. Sputum microbiomic clustering in asthma and chronic obstructive pulmonary disease reveals a Haemophilus-predominant subgroup[J]. Allergy, 2020, 75(4):808-817. doi:10.1111/all.14058pmid:31556120 |
| [11] | Simpson JL, Grissell TV, Douwes J, et al. Innate immune activation in neutrophilic asthma and bronchiectasis[J]. Thorax, 2007, 62(3):211-218. pmid:16844729 |
| [12] | Wood LG, Simpson JL, Hansbro PM, et al. Potentially pathogenic bacteria cultured from the sputum of stable asthmatics are associated with increased 8-isoprostane and airway neutrophilia[J]. Free Radic Res, 2010, 44(2):146-154. doi:10.3109/10715760903362576URL |
| [13] | Ver Heul A, Planer J, Kau AL. The human microbiota and asthma[J]. Clin Rev Allergy Immunol, 2019, 57(3):350-363. doi:10.1007/s12016-018-8719-7URL |
| [14] | Qiu YY, Wu Y, Lin MJ, et al. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/ RORγt[J]. Biomed Pharmacother, 2019, 111:386-394. doi:10.1016/j.biopha.2018.12.080URL |
| [15] | Wang L, Wan H, Tang W, et al. Critical roles of adenosine A2A receptor in regulating the balance of Treg/Th17 cells in allergic asthma[J]. Clin Respir J, 2018, 12(1):149-157. doi:10.1111/crj.12503pmid:27216911 |
| [16] | Wang C, Wang D, Zhao H, et al. Traffic-related PM 2.5 and diverse constituents disturb the balance of Th17/Treg cells by STAT3/RORγt-STAT5/Foxp3 signaling pathway in a rat model of asthma[J]. Int Immunopharmacol, 2021, 96:107788. doi:10.1016/j.intimp.2021.107788URL |
| [17] | Boissier MC, Assier E, Falgarone G, et al. Shifting the imbalance from Th1/Th2 to Th17/treg: the changing rheumatoid arthritis paradigm[J]. Joint Bone Spine, 2008, 75(4):373-375. doi:10.1016/j.jbspin.2008.04.005URL |
| [18] | Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression[J]. Trends Mol Med, 2007, 13(3):108-116. pmid:17257897 |
| [19] | McCann JR, Mason SN, Auten RL, et al. Early-life intranasal colonization with nontypeable haemophilus influenzae exacerbates juvenile airway disease in mice[J]. Infect Immun, 2016, 84(7):2022-2030. doi:10.1128/IAI.01539-15pmid:27113355 |
| [20] | Flaherty S, Reynolds JM. TLR function in murine CD4(+) T lymphocytes and their role in inflammation[J]. Methods Mol Biol, 2016, 1390:215-227. doi:10.1007/978-1-4939-3335-8_14pmid:26803632 |
| [21] | Yang L, Xu WG, Xu YP, et al. The effect of peptidoglycan stimulation on basophil-mediated atopic responses during pregnancy and in newborns[J]. J Asthma, 2011, 48(4):374-379. doi:10.3109/02770903.2011.563810pmid:21438704 |
| [22] | Jung YH, Seo JH, Kim HY, et al. The relationship between asthma and bronchiolitis is modified by TLR4, CD14, and IL-13 polymorphisms[J]. Pediatr Pulmonol, 2015, 50(1):8-16. doi:10.1002/ppul.22978URL |
| [1] | 周新, 张旻.中国支气管哮喘防治指南(2020年版)解读[J]. 诊断学理论与实践, 2021, 20(02): 138-143. |
| [2] | 康建强, 董杨阳, 杨玲, 宋珍, 范嘉盈.下呼吸道流感嗜血杆菌定植对哮喘小鼠气道炎症的影响及信号通路的研究[J]. 诊断学理论与实践, 2020, 19(1): 44-49. |
| [3] | 李欣欣, 肖淑珍, 谭希婧, 倪语星, 韩立中.评估新型奈瑟嗜血杆菌药敏试剂盒测试流感嗜血杆菌药敏结果[J]. 诊断学理论与实践, 2019, 18(05): 526-531. |
| [4] | 时国朝, 黄春容.呼吸道及肠道微生物菌群与支气管哮喘的发病及治疗[J]. 诊断学理论与实践, 2019, 18(03): 241-245. |
| [5] | 张旻, 张雪, 周新.2017年《重症哮喘诊断与处理中国专家共识》解读[J]. 诊断学理论与实践, 2018, 17(06): 630-634. |
| [6] | 康建强, 徐欣欣, 董杨阳, 杨玲, 范嘉盈, 宋珍, 周妍.哮喘小鼠下呼吸道流感嗜血杆菌定植的研究[J]. 诊断学理论与实践, 2018, 17(01): 102-107. |
| [7] | 宋元林, 陈淑靖,.呼出气一氧化氮测定在气道疾病中的临床应用[J]. 诊断学理论与实践, 2016, 15(03): 215-217. |
| [8] | 余莉, 邱忠民,.诱导痰在哮喘诊断、分型、治疗反应及预后判断中的作用[J]. 诊断学理论与实践, 2016, 15(03): 205-208. |
| [9] | 华雯, 李雯, 沈华浩,.特殊类型哮喘的诊治[J]. 诊断学理论与实践, 2016, 15(03): 218-221. |
| [10] | 戴然然, 王林林, 时国朝,.调节性T细胞表达CD39和CD73在小鼠哮喘模型发病中的作用[J]. 诊断学理论与实践, 2016, 15(03): 226-230. |
| [11] | 齐广生, 刘锦铭, 顾文超, 杨文兰, 郭建, 王英敏, 郑卫, 徐黎青,.急性发作期支气管哮喘患者的容积二氧化碳图斜率参数变化[J]. 诊断学理论与实践, 2016, 15(03): 231-234. |
| [12] | 刘锦铭, 齐广生,.肺功能检查在支气管哮喘诊断、评估中的应用[J]. 诊断学理论与实践, 2016, 15(03): 212-214. |
| [13] | 邵莉, 曹兰芳, 李晓丽, 郭胤仕, 邹寒冰,.支气管哮喘小鼠支原体感染模型肺组织中T-bet、GATA-3和NF-κB转录因子的变化[J]. 诊断学理论与实践, 2016, 15(02): 137-141. |
| [14] | 倪瑾华, 程齐俭, 冯耘, 曹蓓, 陈聆, 万欢英,.呼出气一氧化氮联合相关因素对咳嗽变异性哮喘的诊断价值评价[J]. 诊断学理论与实践, 2014, 13(06): 606-609. |
| [15] | 孙晓远, 陈宇清, 周新, 王铭杰, 朱东, 鲍鲁红,.92例咳嗽变异性哮喘患者的呼出气一氧化氮浓度与气流阻塞的相关研究[J]. 诊断学理论与实践, 2013, 12(05): 522-525. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||