| [1] |
Libby P, Theroux P. Pathophysiology of coronary artery disease[J]. Circulation, 2005, 111(25):3481-3488. doi:10.1161/CIRCULATIONAHA.105.537878URL |
| [2] |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35(9):833-854. |
| [3] |
Khera AV, Kathiresan S. Genetics of coronary artery di-sease: discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6):331-344. doi:10.1038/nrg.2016.160pmid:28286336 |
| [4] |
Lusis AJ. Atherosclerosis[J]. Nature, 2000, 407(6801):233-241. doi:10.1038/35025203URL |
| [5] |
Frostegård J. Immunity, atherosclerosis and cardiovascular disease[J]. BMC Med, 2013, 11:117. doi:10.1186/1741-7015-11-117pmid:23635324 |
| [6] |
Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in atherogenesis[J]. Curr Med Chem, 2019, 26(9):1693-1700. doi:10.2174/0929867325666180508100950pmid:29737246 |
| [7] |
Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture[J]. Circ Res, 2014, 114(12):1852-1866. doi:10.1161/CIRCRESAHA.114.302721pmid:24902970 |
| [8] |
Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis[J]. Can J Cardiol, 2017, 33(3):313-324. doi:S0828-282X(17)30001-6pmid:28232017 |
| [9] |
Lu Y, Thavarajah T, Gu W, et al. Impact of miRNA in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9):e159-e170. |
| [10] |
Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory responseviatargeting toll-like receptor 4[J]. FEBS Lett, 2011, 585(6):854-860. doi:10.1016/j.febslet.2011.02.009pmid:21329689 |
| [11] |
Wang M, Li J, Cai J, et al. Overexpression of MicroRNA-16 alleviates atherosclerosis by inhibition of inflammatory pathways[J]. Biomed Res Int, 2020, 2020:8504238. |
| [12] |
O Sullivan JF, Neylon A, McGorrian C, et al. miRNA-93-5p and other miRNAs as predictors of coronary artery disease and STEMI[J]. Int J Cardiol, 2016, 224:310-316. doi:S0167-5273(16)32196-9pmid:27665403 |
| [13] |
Di Pietro N, Formoso G, Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis[J]. Vascul Pharmacol, 2016, 84:1-7. doi:10.1016/j.vph.2016.05.013URL |
| [14] |
Gisterå A, Hansson GK. The immunology of atherosclerosis[J]. Nat Rev Nephrol, 2017, 13(6):368-380. doi:10.1038/nrneph.2017.51pmid:28392564 |
| [15] |
Guo JF, Zhang Y, Zheng QX, et al. Association between elevated plasma microRNA-223 content and severity of coronary heart disease[J]. Scand J Clin Lab Invest, 2018, 78(5):373-378. doi:10.1080/00365513.2018.1480059URL |
| [16] |
Bao MH, Li GY, Huang XS, et al. Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis[J]. Mol Pharmacol, 2018, 93(4):368-375. doi:10.1124/mol.117.110650URL |
| [17] |
Jiang W, Li T, Wang J, et al. miR-140-3p Suppresses cell growth and induces apoptosis in colorectal cancer by targeting PD-L1[J]. Onco Targets Ther, 2019, 12:10275-10285. doi:10.2147/OTT.S226465URL |
| [18] |
Yan L, Cai K, Sun K, et al. MiR-1290 promotes prolife-ration, migration, and invasion of glioma cells by targe-ting LHX6[J]. J Cell Physiol, 2018, 233(10):6621-6629. doi:10.1002/jcp.26381URL |
| [19] |
Zhou R, Li X, Hu G, et al. miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene[J]. PLoS One, 2012, 7(1):e30772. doi:10.1371/journal.pone.0030772URL |
| [20] |
Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability[J]. Cell, 2005, 120(5):623-634. doi:10.1016/j.cell.2004.12.038URL |
| [21] |
Krogmann AO, Lüsebrink E, Steinmetz M, et al. Proinflammatory stimulation of Toll-like receptor 9 with high dose CpG ODN 1826 impairs endothelial regeneration and promotes atherosclerosis in mice[J]. PLoS One, 2016, 11(1):e0146326. doi:10.1371/journal.pone.0146326URL |
| [22] |
Satoh M, Takahashi Y, Tabuchi T, et al. Circulating Toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin-angiotensin system blockade[J]. Clin Sci (Lond), 2015, 128(8):483-491. doi:10.1042/CS20140417URL |
| [23] |
Lin F, Pei L, Zhang Q, et al. Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation[J]. J Cell Physiol, 2018, 233(10):6683-6692. doi:10.1002/jcp.26468URL |
| [24] |
Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death[J]. Biochem Pharmacol, 2016, 116:1-10. doi:10.1016/j.bcp.2016.03.009pmid:26993379 |
| [25] |
Chen T, Xiao Q, Wang X, et al. miR-16 regulates proli-feration and invasion of lung cancer cellsviathe ERK/MAPK signaling pathway by targeted inhibition of MAPK kinase 1(MEK1)[J]. J Int Med Res, 2019, 47(10):5194-5204. doi:10.1177/0300060519856505URL |
| [26] |
Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment[J]. Cell Death Differ, 2018, 25(1):21-26. doi:10.1038/cdd.2017.159pmid:28984869 |