
诊断学理论与实践››2018,Vol. 17››Issue (04): 477-481.doi:10.16150/j.1671-2870.2018.04.025
司莉萍, 姚伟武
收稿日期:2018-03-09出版日期:2018-08-25发布日期:2018-08-25通讯作者:姚伟武 E-mail: yaoweiwuhuan@163.com基金资助:
Received:2018-03-09Online:2018-08-25Published:2018-08-25中图分类号:
司莉萍, 姚伟武. 膝关节软骨和软骨下骨在早期骨关节炎定量研究成像的MRI和CT新技术研究进展[J]. 诊断学理论与实践, 2018, 17(04): 477-481.
| [1] Kraus VB, Blanco FJ, Englund M, et al.Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use[J]. Osteoarthritis Cartilage,2015,23(8):1233-1241. [2] Roughley PJ, Lee ER.Cartilage proteoglycans: structure and potential functions[J]. Microsc Res Tech,1994,28(5):385-397. [3] Hafezi-Nejad N, Demehri S, Guermazi A, et al.Osteoarthritis year in review 2017: updates on imaging advancements[J]. Osteoarthritis Cartilage,2018,26(3):341-349. [4] 吴昆华, 王天朝, 梁虹, 等. 3.0T 磁共振不同成像技术对膝关节软骨显示对比分析[J]. 实用放射学杂志,2014(6):1010-1013. [5] Zhong H, Miller DJ, Urish KL.T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative[J]. Skeletal Radiol,2016,45(7):909-913. [6] Wang L, Chen QQ, Tong PJ, et al.Progress on the early diagnosis of knee osteoarthritis[J]. Zhongguo Gu Shang,2016,29(3):288-291. [7] 王树庆, 梁有禄, 肖恩华. 膝关节软骨MR生理成像技术研究进展[J]. 国际医学放射学杂志,2015,38(2):152-156,164. [8] Williams A, Qian Y, Chu CR.UTE-T2* mapping of human articular cartilage in vivo: a repeatability assessment[J]. Osteoarthritis Cartilage,2011,19(1):84-88. [9] Miese FR, Zilkens C, Holstein A, et al.Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping[J]. Acta Radiol,2011,52(1):106-110. [10] Li X, Han ET, Ma CB, et al. [11] Sasho T, Katsuragi J, Yamaguchi S, et al.Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic gra-ding as a biomarker for early articular degeneration of knee cartilage[J]. Clin Rheumatol,2017,36(9):2109-2119. [12] Pritzker KP, Gay S, Jimenez SA, et al.Osteoarthritis cartilage histopathology: grading and staging[J]. Osteoarthritis Cartilage,2006,14(1):13-29. [13] Madelin G, Regatte RR.Biomedical applications of sodium MRI [14] Lesperance LM, Gray ML, Burstein D.Determination of fixed charge density in cartilage using nuclear magnetic resonance[J]. J Orthop Res,1992,10(1):1-13. [15] Wheaton AJ, Borthakur A, Shapiro EM, et al.Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging--feasibility study[J]. Radiology,2004, 231(3):900-905. [16] Madelin G, Babb J, Xia D, et al.Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR ima-ging in subjects with and subjects without osteoarthritis[J]. Radiology,2013,268(2):481-491. [17] Madelin G, Babb JS, Xia D, et al.Reproducibility and repeatability of quantitative sodium magnetic resonance imaging [18] Gray ML, Burstein D, Kim YJ, et al.2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications[J]. J Orthop Res,2008,26(3):281-291. [19] van Tiel J, Kotek G, Reijman M, et al. Is T1ρ mapping an alternative to delayed gadolinium-enhanced MR ima-ging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An [20] Jung JY, Yoon YC, Kim HR, et al.Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging[J]. Radiology,2013,268(3):802-813. [21] Liu C, Liu C, Ren X, et al.Quantitative evaluation of subchondral bone microarchitecture in knee osteoarthritis using 3T MRI[J]. BMC Musculoskelet Disord,2017,18(1):496. [22] Novakofski KD, Pownder SL, Koff MF, et al.High-Resolution Methods for Diagnosing Cartilage Damage [23] Yoon YJ, Chang S, Kim OY, et al.Three-dimensional imaging of hepatic sinusoids in mice using synchrotron radiation micro-computed tomography[J]. PloS one,2013, 8(7):e68600. [24] Chen RC, Dreossi D, Mancini L, et al.PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction[J]. J Synchrotron Radiat,2012,19(Pt 5):836-845. [25] 陈华斌, 胡建中, 周京泳, 等. 同步辐射X线相衬成像技术在兔髌骨-髌腱连接点纤维软骨细胞的三维可视化应用研究[J]. 核技术,2015(11):1-8. [26] Ruan MZ, Dawson B, Jiang MM, et al.Quantitative imaging of murine osteoarthritic cartilage by phase-contrast micro-computed tomography[J]. Arthritis Rheum,2013,65(2):388-396. [27] 刘成磊, 郗艳, 左后东, 等. 同步辐射显微CT的人关节软骨三维成像研究[J]. CT 理论与应用研究,2015,24(6):793-799. [28] Das Neves Borges P, Vincent TL, Marenzana M. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis[J]. PloS one,2017,12(3):e0174294. [29] Zhang ZM, Li ZC, Jiang LS.Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis[J]. Osteoporos Int,2010,21(8):1383-1390. |
| [1] | 耿佳, 星月, 胡扬帆, 司莉萍, 钟京谕, 郭瀚, 姚伟武.同步辐射X线显微断层成像在兔膝骨关节炎软骨及软骨下骨三维成像中的应用研究[J]. 诊断学理论与实践, 2020, 19(03): 238-242. |
| [2] | 符蓉, 王朝夫, 欧阳斌燊.软骨母细胞瘤21例临床病理及影像学特征分析[J]. 诊断学理论与实践, 2017, 16(05): 537-539. |
| [3] | 姜铃霞, 姚伟武, 赵海南, 杨世埙,.实验性软骨损伤的生物学表达与病理分期对照研究[J]. 诊断学理论与实践, 2013, 12(01): 80-85. |
| [4] | 傅启华, 李玉婵, 王剑, 王静,.遗传性多发性骨软骨瘤EXT基因的一种新突变[J]. 诊断学理论与实践, 2008, 7(06): 625-627. |
| [5] | 陆勇, 丁晓毅, 宋卫峰, 杜联军, 颜凌, 江浩, 刘建军, 陈克敏,.磁共振关节软骨成像的不同序列信号比较[J]. 诊断学理论与实践, 2007, 6(03): 232-235. |
| [6] | 王嘉, 吴宁, 殷国玮, 于荣华, 曹德良, 张亚东,.MRI在膝关节损伤中的诊断价值[J]. 诊断学理论与实践, 2006, 5(04): 343-346. |
| [7] | 王伟昱.三维脂肪抑制扰相梯度回波序列在检测关节软骨病变中的应用[J]. 诊断学理论与实践, 2003, 2(01): 73-74+79. |
| [8] | 姚秋英,陈克敏,韩洪杰.膝关节软骨MR成像的技术研究[J]. 诊断学理论与实践, 2002, 1(01): 59-60. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||