[1] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python [J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. [2] LAKSHMINARAYAN K, HARP S A, SAMAD T. Imputation of missing data in industrial databases [J]. Applied Intelligence, 1999, 11(3): 259-275. [3] HATHAWAY R J, BEZDEK J C. Fuzzy c-means clustering of incomplete data [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 2001, 31(5): 735-744. [4] PELCKMANS K, DE BRABANTER J, SUYKENS J A K, et al. Handling missing values in support vector machine classifiers [J]. Neural Networks, 2005, 18(5/6): 684-692. [5] RAHMAN M G, ISLAM M Z. Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques [J]. Knowledge-Based Systems, 2013, 53: 51-65. [6] LIU Z G, PAN Q, DEZERT J, et al. Adaptive imputation of missing values for incomplete pattern classification [J]. Pattern Recognition, 2016, 52: 85-95. [7] LAI X C, WU X, ZHANG L Y, et al. Imputations of missing values using a tracking-removed autoencoder trained with incomplete data [J]. Neurocomputing, 2019, 366: 54-65. [8] ADWAN S, AROF H. On improving dynamic time warping for pattern matching [J]. Measurement, 2012, 45(6): 1609-1620. [9] BIAN W T, CUI G, WANG X. A trajectory collaboration based map matching approach for low-samplingrate GPS trajectories [J]. Sensors, 2020, 20(7): 2057. [10] NIE H, HAN X P, HE B, et al. Deep sequenceto- sequence entity matching for heterogeneous entity resolution [C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 629–638. [11] LI X, ZHANG W, MA H, et al. Data alignments in machinery remaining useful life prediction using deep adversarial neural networks [J]. Knowledge-Based Systems, 2020, 197: 105843. [12] ZENG K S, LI C J, HOU L, et al. A comprehensive survey of entity alignment for knowledge graphs [J]. AI Open, 2021, 2: 1-13. [13] FU T C. A review on time series data mining [J]. Engineering Applications of Artificial Intelligence, 2011, 24(1): 164-181. [14] ESLING P, AGON C. Time-series data mining [J]. ACM Computing Surveys, 2012, 45(1): 1-34. [15] YAN J H, MENG Y, LU L, et al. Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for predictive maintenance [J]. IEEE Access, 2017, 5: 23484-23491. [16] TAO F, QI Q L, LIU A, et al. Data-driven smart manufacturing [J]. Journal of Manufacturing Systems, 2018, 48: 157-169. [17] QI Q L, TAO F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison [J]. IEEE Access, 2018, 6: 3585-3593. [18] ZHANG Z, TAVENARD R, BAILLY A, et al. Dynamic time warping under limited warping path length [J]. Information Sciences, 2017, 393: 91-107. [19] KEOGH E J, PAZZANI M J. Derivative dynamic time warping [C]//2001 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2001: 1-11. [20] BISHOP C. Neural networks for pattern recognition [M]. New York: Oxford University Press, 1995. [21] BISHOP C M. Pattern recognition and machine learning (information science and statistics) [M]. Berlin, Heidelberg: Springer, 2006: 179-224. [22] SILVA-RAM′IREZ E L, PINO-MEJ′IAS R, L′OPEZCOELLO M, et al. Missing value imputation on missing completely at random data using multilayer perceptrons [J]. Neural Networks, 2011, 24(1): 121-129. [23] CHEN B H, DENG W H, DU J P. Noisy softmax: improving the generalization ability of DCNN via postponing the early softmax saturation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4021-4030. |