[1] FLEISCHMANN C, SCHERAG A, ADHIKARI N K J, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations [J]. American Journal of Respiratory and Critical Care Medicine, 2016, 193(3): 259-272. [2] SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) [J]. JAMA, 2016, 315(8): 801-810. [3] DESAUTELS T, CALVERT J, HOFFMAN J, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach [J]. JMIR Medical Informatics, 2016, 4(3): e28. [4] DESAUTELS T, HOFFMAN J, BARTON C, et al. Pediatric severe sepsis prediction using machine learning [EB/OL]. (2017-11-22). https://www.biorxiv.org/content/10.1101/223289v1. [5] ZHANG Z H, HONG Y C. Development of a novel score for the prediction of hospital mortality in patients with severe sepsis: The use of electronic healthcare records with LASSO regression [J]. Oncotarget, 2017, 8(30): 49637-49645. [6] LE S, HOFFMAN J, BARTON C, et al. Pediatric severe sepsis prediction using machine learning [J]. Frontiers in Pediatrics, 2019, 7: 413. [7] CALVERT J S, PRICE D A, CHETTIPALLY U K, et al. A computational approach to early sepsis detection [J]. Computers in Biology and Medicine, 2016, 74: 69-73. [8] FUTOMA J, HARIHARAN S, HELLER K. Learning to detect sepsis with a multitask Gaussian process RNN classifier [C]//34th International Conference on Machine Learning. Sydney: ICML, 2017: 1174-1182. [9] FUTOMA J, HARIHARAN S, HELLER K. An improved multi-output Gaussian process rnn with realtime validation for early sepsis detection [C]//2nd Machine Learning for Healthcare Conference. Boston: PMLR, 2017: 243-254. [10] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine [J]. The Annals of Statistics, 2001, 29(5): 1189-1232. [11] HE X R, PAN J F, JIN O, et al. Practical lessons from predicting clicks on ads at Facebook [C]//Eighth International Workshop on Data Mining for Online Advertising. New York: ACM, 2014: 1-9. [12] ARIK S O, PFISTER T. TabNet: Attentive interpretable tabular learning [EB/OL]. (2020-12-09). https://arxiv.org/abs/1908.07442. [13] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]//International Conference on Machine Learning. Lille: PMLR, 2015: 448-456. [14] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks [C]//International Conference on Machine Learning. Sydney: PMLR, 2017: 933-941. [15] MARTINS A, ASTUDILLO R. From softmax to sparsemax: A sparse model of attention and multilabel classification [C]//International Conference on Machine Learning. New York: PMLR, 2016: 1614- 1623. [16] FLEMING S, THOMPSON M, STEVENS R, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies [J]. The Lancet, 2011, 377(9770): 1011-1018. [17] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [18] HOCHREITER S, SCHMIDHUBER J. Long shortterm memory [J]. Neural Computation, 1997, 9(8): 1735-1780. [19] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation [M]//Parallel distributed processing: Explorations in the microstructure of cognition: Foundations. Cambridge: MIT Press, 1987: 318-362. [20] CRAMER J S. The origins of logistic regression [EB/OL]. (2003-01-25). https://ssrn.com/abstract=360300. [21] CORTES C, VAPNIK V. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273-297. [22] ALTMAN N S. An introduction to kernel and nearestneighbor nonparametric regression [J]. The American Statistician, 1992, 46(3): 175-185. [23] HO T K. Random decision forests [C]//3rd International Conference on Document Analysis and Recognition. Montreal: IEEE, 1995: 278-282. [24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [25] VAN DER MAATEN L. Accelerating t-SNE using tree-based algorithms [J]. Journal of Machine Learning Research, 2014, 15(1): 3221-3245. [26] BORG I, GROENEN P. Modern multidimensional scaling: Theory and applications [J]. Journal of Educational Measurement, 2003, 40(3): 277-280. [27] TIPPING M E, BISHOP C M. Probabilistic principal component analysis [J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1999, 61(3): 611-622.
|