Journal of shanghai Jiaotong University (Science)››2015,Vol. 20››Issue (2): 171-176.doi:10.1007/s12204-015-1606-y

Previous ArticlesNext Articles

Soft-Sensing Method with Online Correction Based on Semi-Supervised Learning

Soft-Sensing Method with Online Correction Based on Semi-Supervised Learning

TANG Qi-feng (汤奇峰), LI De-wei* (李德伟), XI Yu-geng (席裕庚)

  1. (Department of Automation; Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai Jiaotong University, Shanghai 200240, China)
  2. (Department of Automation; Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai Jiaotong University, Shanghai 200240, China)
  • Online:2015-04-30Published:2015-04-02
  • Contact:LI De-wei (李德伟) E-mail:dwli@sjtu.edu.cn

Abstract:Soft sensing has been widely used in chemical industry to build an online monitor of the variables which are unmeasurable online or measurable online but with a high cost. One inherent difficulty is insufficiency of the training samples because the labeled data are limited. Besides, the traditional soft-sensing structure has no online correction mechanism. The forecasting result may be incorrect if the working condition is changed. In this work, a semi-supervised learning (SSL) method is proposed to build the soft-sensing model by use of the unlabeled data. Meanwhile, an online correction mechanism is proposed to establish a soft-sensing approach. The mechanism estimates the input variables at each step by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and generalization ability than other approaches.

Key words:soft-sensing|semi-supervised learning (SSL)| online correction| neural network

摘要:Soft sensing has been widely used in chemical industry to build an online monitor of the variables which are unmeasurable online or measurable online but with a high cost. One inherent difficulty is insufficiency of the training samples because the labeled data are limited. Besides, the traditional soft-sensing structure has no online correction mechanism. The forecasting result may be incorrect if the working condition is changed. In this work, a semi-supervised learning (SSL) method is proposed to build the soft-sensing model by use of the unlabeled data. Meanwhile, an online correction mechanism is proposed to establish a soft-sensing approach. The mechanism estimates the input variables at each step by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and generalization ability than other approaches.

关键词:soft-sensing|semi-supervised learning (SSL)| online correction| neural network

CLC Number:

Baidu
map