[1] ZHANG Z J, LIU L, LI X R, et al. Compressed sensing for rapid IR imaging [C]//IET Colloquium on Millimetre-Wave and Terahertz Engineering&Technology 2016. London: IET, 2016: 1-6. [2] UZELER H, CAKIR S, AYTAÇ T. Image reconstruction for single detector rosette scanning systems based on compressive sensing theory [J].Optical Engineering, 2016,55(2): 023108. [3] XIE C, LU X, ZENG W. Single frame super-resolution reconstruction based on sparse representation [J].Journal of Southeast University(English Edition), 2016,32(2): 177-182. [4] BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector [J].Physical Review A, 2009,79(5): 053840. [5] SHAPIRO J H. Computational ghost imaging [J].Physical Review A, 2008,78(6): 061802. [6] WANG L, ZHAO S M. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform [J].Photonics Research, 2016,4(6): 240. [7] ZHANG Z B, LIU S J, PENG J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements [J].Optica, 2018,5(3): 315. [8] ROUSSET F, DUCROS N, FARINA A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging [J].IEEE Transactions on Computational Imaging, 2017,3(1): 36-46. [9] TSAI R, HUANG T S. Multiframe image restoration and registration [J].Computer Vision and Image Processing, 1984,1: 317-339. [10] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1637-1645. [11] ZHANG D, HE J Z. Hybrid sparse-representation-based approach to image super-resolution reconstruction [J].Journal of Electronic Imaging, 2017,26(2): 023008. [12] TAN J, TAO Z Q, CAO A H, et al. An edge-preserving iterative back-projection method for image super-resolution [J].Proceedings of SPIE, 2016,10033: 844-849. [13] DAVENPORT M A, WAKIN M B. Analysis of orthogonal matching pursuit using the restricted isometry property [J].IEEE Transactions on Information Theory, 2010,56(9): 4395-4401. [14] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J].IEEE Transactions on Information Theory, 2007,53(12): 4655-4666. [15] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation [J].IEEE Transactions on ImageProcessing, 2010,19(11): 2861-2873. [16] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]//2017IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140. [17] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]//2018IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481. [18] AN Z Y, ZHANG J Y, SHENG Z Y, et al. RBDN: Residual bottleneck dense network for image super-resolution [J].IEEE Access, 2021,9: 103440-103451. [19] ZHU Y, GEIß C, SO E. Image super-resolution with dense-sampling residual channel-spatial attention networks for multi-temporal remote sensing image classification [J].International Journal of Applied Earth Observation and Geoinformation, 2021,104: 102543. [20] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks [M]//Computer vision - ECCV 2018. Cham: Springer, 2018: 294-310. [21] WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: A survey [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(10): 3365-3387. [22] AYAS S, EKINCI M. Microscopic image super resolution using deep convolutional neural networks [J].Multimedia Tools and Applications, 2020,79(21): 15397-15415. [23] WANG Y F, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 977-97709. [24] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883. [25] CABALLERO J, LEDIG C, AITKEN A, et al. Real-time video super-resolution with spatio-temporal networks and motion compensation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2848-2857. [26] SAJJADI M S M, SCHÖLKOPF B, HIRSCH M. EnhanceNet: single image super-resolution through automated texture synthesis [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4501-4510. [27] WANG X T, YU K, DONG C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform [C]//2018IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 606-615. |