a, b","name_cn":"Yue Wu","xref_en":"a, b","name_en":"Yue Wu"},{"deceased":false,"xref":"b","name_cn":"Shuangrong You","xref_en":"b","name_en":"Shuangrong You"},{"deceased":false,"xref":"a, *","name_cn":"Jin Fang","email":"jfang@bjtu.edu.cn","xref_en":"a, *","name_en":"Jin Fang"},{"deceased":false,"xref":"b","name_cn":"Rodney A. Badcock","xref_en":"b","name_en":"Rodney A. Badcock"},{"deceased":false,"xref":"b","name_cn":"Nicholas J. Long","xref_en":"b","name_en":"Nicholas J. Long"},{"deceased":false,"xref":"b, *","name_cn":"Zhenan Jiang","email":"zhenan.jiang@vuw.ac.nz","xref_en":"b, *","name_en":"Zhenan Jiang"}],"authorNotesCorresp_en":["* E-mail addresses: jfang@bjtu.edu.cn (J. Fang),","zhenan.jiang@vuw.ac.nz (Z. Jiang)."],"referenceList":[{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b1","label":"[1]","nian":2002,"citedCount":1,"citationList":[{"personList":[{"name":"Malozemoff AP","personType":"author"},{"name":"Maguire J","personType":"author"},{"name":"Gamble B","personType":"author"},{"name":"Kalsi S","personType":"author"}],"content":"Malozemoff AP, Maguire J, Gamble B, Kalsi S. Power applications of hightemperature superconductors: status and perspectives. IEEE Trans Appl Supercond 2002; 12(1):778-81."}]},{"sourceEn":"J Eur Ceram Soc","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b2","label":"[2]","nian":2004,"citedCount":1,"citationList":[{"personList":[{"name":"Chen M","personType":"author"},{"name":"Donzel L","personType":"author"},{"name":"Lakner M","personType":"author"},{"name":"Paul W","personType":"author"}],"content":"Chen M, Donzel L, Lakner M, Paul W. High temperature superconductors for power applications. J Eur Ceram Soc 2004; 24(6):1815-22."}]},{"sourceEn":"Cryogenics","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b3","label":"[3]","nian":2005,"citedCount":1,"citationList":[{"personList":[{"name":"Tsukamoto O","personType":"author"}],"content":"Tsukamoto O. Roads for HTS power applications to go into the real world cost issues and technical issues. Cryogenics 2005; 45(1):3-10."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b4","label":"[4]","nian":2016,"citedCount":1,"citationList":[{"personList":[{"name":"Jin J","personType":"author"},{"name":"Tang Y","personType":"author"},{"name":"Xiao X","personType":"author"},{"name":"Du B","personType":"author"},{"name":"Wang Q","personType":"author"},{"name":"Wang J","personType":"author"},{"personType":"author"}],"content":"Jin J, Tang Y, Xiao X, Du B, Wang Q, Wang J, et al. HTS power devices and systems: principles, characteristics, performance, and efficiency. IEEE Trans Appl Supercond 2016; 26(7):3800526."}]},{"sourceEn":"iScience","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b5","label":"[5]","nian":2021,"citedCount":1,"citationList":[{"personList":[{"name":"Yao C","personType":"author"},{"name":"Ma Y","personType":"author"}],"content":"Yao C, Ma Y. Superconducting materials: challenges and opportunities for largescale applications. iScience 2021; 24(6):102541."}]},{"sourceEn":"Nat Rev Mater","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b6","label":"[6]","nian":2021,"citedCount":1,"citationList":[{"personList":[{"name":"MacManus-Driscoll JL","personType":"author"},{"name":"Wimbush SC","personType":"author"}],"content":"MacManus-Driscoll JL, Wimbush SC. Processing and application of hightemperature superconducting coated conductors. Nat Rev Mater 2021; 6:587-604."}]},{"sourceEn":"IEEE Power Eng Rev","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b7","label":"[7]","nian":2000,"citedCount":1,"citationList":[{"personList":[{"name":"McConnell BW","personType":"author"},{"name":"Mehta SP","personType":"author"},{"name":"Walker MS","personType":"author"}],"content":"McConnell BW, Mehta SP, Walker MS. HTS transformers. IEEE Power Eng Rev 2000; 20(6):7-11."}]},{"sourceEn":"Physica C (Amsterdam, Neth)","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b8","label":"[8]","nian":2002,"citedCount":1,"citationList":[{"personList":[{"name":"Leghissa M","personType":"author"},{"name":"Gromoll B","personType":"author"},{"name":"Rieger J","personType":"author"},{"name":"Oomen M","personType":"author"},{"name":"Neumüller HW","personType":"author"},{"name":"Schlosser R","personType":"author"},{"personType":"author"}],"content":"Leghissa M, Gromoll B, Rieger J, Oomen M, Neumüller HW, Schlosser R, et al. Development and application of superconducting transformers. Physica C (Amsterdam, Neth) 2002;372-376:1688-93."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b9","label":"[9]","nian":2003,"citedCount":1,"citationList":[{"personList":[{"name":"Schlosser R","personType":"author"},{"name":"Schmidt H","personType":"author"},{"name":"Leghissa M","personType":"author"},{"name":"Meinert M","personType":"author"}],"content":"Schlosser R, Schmidt H, Leghissa M, Meinert M. Development of high-temperature superconducting transformers for railway applications. IEEE Trans Appl Supercond 2003; 13(2):2325-30."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"journal","id":"b10","label":"[10]","nian":2010,"citedCount":1,"citationList":[{"personList":[{"name":"Pleva EF","personType":"author"},{"name":"Mehrotra V","personType":"author"},{"name":"Schwenterly SW","personType":"author"}],"content":"Pleva EF, Mehrotra V, Schwenterly SW. Conductor requirements for hightemperature superconducting utility power transformers. Supercond Sci Technol 2010; 23(1):014025."}]},{"sourceEn":"High-temperature superconducting (HTS) transformers for power grid applications","bodyP_ids":["mag_rich_body_p_1"],"publicationType":"book","id":"b11","label":"[11]","nian":2015,"citedCount":1,"citationList":[{"personList":[{"name":"Staines MP","personType":"author"},{"name":"Jiang Z","personType":"author"},{"name":"Glasson N","personType":"author"},{"name":"Buckley RG","personType":"author"},{"name":"Pannu M","personType":"author"}],"content":"Staines MP, Jiang Z, Glasson N, Buckley RG, Pannu M. High-temperature superconducting (HTS) transformers for power grid applications. In: Rey C, editor. Superconductors in the power grid: materials and applications Ch 12, Woodhead Publishing series in Energy. Elsevier; 2015. p. 367-97."}]},{"sourceEn":"Cryogenics","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b12","label":"[12]","nian":1998,"citedCount":1,"citationList":[{"personList":[{"name":"Zueger H","personType":"author"}],"content":"Zueger H. 630 kVA high temperature superconducting transformer. Cryogenics 1998; 38(11):1169-72."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b13","label":"[13]","nian":1999,"citedCount":1,"citationList":[{"personList":[{"name":"Schwenerly SW","personType":"author"},{"name":"McConnel BW","personType":"author"},{"name":"Demko JA","personType":"author"},{"name":"Fadnek A","personType":"author"},{"name":"Hsu J","personType":"author"},{"name":"List FA","personType":"author"}],"content":"Schwenerly SW, McConnel BW, Demko JA, Fadnek A, Hsu J, List FA. Performance of a 1-MVA HTS demonstration transformer. IEEE Trans Appl Supercond 1999; 9 (2):680-4."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b14","label":"[14]","nian":2000,"citedCount":1,"citationList":[{"personList":[{"name":"Kummeth P","personType":"author"},{"name":"Schlosser R","personType":"author"},{"name":"Massek P","personType":"author"},{"name":"Schmidt H","personType":"author"},{"name":"Albrecht C","personType":"author"},{"name":"Breitfelder D","personType":"author"},{"personType":"author"}],"content":"Kummeth P, Schlosser R, Massek P, Schmidt H, Albrecht C, Breitfelder D, et al. Development and test of a 100 kVA superconducting transformer operated at 77 K. Supercond Sci Technol 2000; 13(5):503-5."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b15","label":"[15]","nian":2001,"citedCount":1,"citationList":[{"personList":[{"name":"Godeke A","personType":"author"},{"name":"Shevchenko OA","personType":"author"},{"name":"Rabbers JJ","personType":"author"},{"name":"Haken B","personType":"author"},{"name":"Spoorenberg CJG","personType":"author"},{"name":"Schiphorst PK","personType":"author"},{"personType":"author"}],"content":"Godeke A, Shevchenko OA, Rabbers JJ, Haken B, Spoorenberg CJG, Schiphorst PK, et al. Construction and test of a 1 MVA-class BSCCO resonator coil. IEEE Trans Appl Supercond 2001; 11(1):1570-3."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b16","label":"[16]","nian":2003,"citedCount":1,"citationList":[{"personList":[{"name":"Jelinek Z","personType":"author"},{"name":"Timoransky Z","personType":"author"},{"name":"Zizek F","personType":"author"},{"name":"Piel H","personType":"author"},{"name":"Chovanec F","personType":"author"},{"name":"Mozola P","personType":"author"},{"personType":"author"}],"content":"Jelinek Z, Timoransky Z, Zizek F, Piel H, Chovanec F, Mozola P, et al. Test results of 14 kVA superconducting transformer with Bi-2223/Ag windings. IEEE Trans Appl Supercond 2003; 13(2):2310-2."}]},{"sourceEn":"Physica C: Superconductivity and its Applications","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b17","label":"[17]","nian":2005,"citedCount":1,"citationList":[{"personList":[{"name":"Bohno T","personType":"author"},{"name":"Tomioka A","personType":"author"},{"name":"Imaizumi M","personType":"author"},{"name":"Sanuki Y","personType":"author"},{"name":"Yamamoto T","personType":"author"},{"name":"Yasukawa Y","personType":"author"},{"personType":"author"}],"content":"Bohno T, Tomioka A, Imaizumi M, Sanuki Y, Yamamoto T, Yasukawa Y, et al. Development of 66 kV/6.9 kV 2 MVA prototype HTS power transformer. Physica C: Superconductivity and its Applications. 2005;426-431:1402-7."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b18","label":"[18]","nian":2005,"citedCount":1,"citationList":[{"personList":[{"name":"Kim S","personType":"author"},{"name":"Kim W","personType":"author"},{"name":"Choi K","personType":"author"},{"name":"Joo H","personType":"author"},{"name":"Hong G","personType":"author"},{"name":"Han J","personType":"author"},{"personType":"author"}],"content":"Kim S, Kim W, Choi K, Joo H, Hong G, Han J, et al. Characteristic tests of a 1 MVA single phase HTS transformer with concentrically arranged windings. IEEE Trans Appl Supercond 2005; 15(2):2214-7."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2","mag_rich_body_p_3"],"publicationType":"journal","id":"b19","label":"[19]","nian":2007,"citedCount":2,"citationList":[{"personList":[{"name":"Wang Y","personType":"author"},{"name":"Zhao X","personType":"author"},{"name":"Han J","personType":"author"},{"name":"Li H","personType":"author"},{"name":"Guan Y","personType":"author"},{"name":"Bao Q","personType":"author"},{"personType":"author"}],"content":"Wang Y, Zhao X, Han J, Li H, Guan Y, Bao Q, et al. Development of a 630 kVA three-phase HTS transformer with amorphous alloy cores. IEEE Trans Appl Supercond 2007; 17(2):2051-4."}]},{"sourceEn":"Physica C","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b20","label":"[20]","nian":2009,"citedCount":1,"citationList":[{"personList":[{"name":"Iwakuma M","personType":"author"},{"name":"Hayashi H","personType":"author"},{"name":"Okamoto H","personType":"author"},{"name":"Tomioka A","personType":"author"},{"name":"Konno M","personType":"author"},{"name":"Saito T","personType":"author"},{"personType":"author"}],"content":"Iwakuma M, Hayashi H, Okamoto H, Tomioka A, Konno M, Saito T, et al. Development of REBCO superconducting power transformers in Japan. Physica C 2009; 469(15):1726-32."}]},{"sourceEn":"J Phys Conf Ser","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b21","label":"[21]","nian":2010,"citedCount":1,"citationList":[{"personList":[{"name":"Kamijo H","personType":"author"},{"name":"Hata H","personType":"author"},{"name":"Fukumoto Y","personType":"author"},{"name":"Tomioka A","personType":"author"},{"name":"Bohno T","personType":"author"},{"name":"Yamada H","personType":"author"},{"personType":"author"}],"content":"Kamijo H, Hata H, Fukumoto Y, Tomioka A, Bohno T, Yamada H, et al. Development of low AC loss windings for superconducting traction transformer. J Phys Conf Ser 2010; 234(3):032027."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2","mag_rich_body_p_84"],"publicationType":"journal","id":"b22","label":"[22]","nian":2013,"citedCount":4,"citationList":[{"personList":[{"name":"Glasson ND","personType":"author"},{"name":"Staines MP","personType":"author"},{"name":"Jiang Z","personType":"author"},{"name":"Allpress NS","personType":"author"}],"content":"Glasson ND, Staines MP, Jiang Z, Allpress NS. Verification testing for a 1 MVA 3- phase demonstration transformer using 2G-HTS Roebel cable. IEEE Trans Appl Supercond 2013; 23(3):5500206."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b23","label":"[23]","nian":2015,"citedCount":3,"citationList":[{"personList":[{"name":"Iwakuma M","personType":"author"},{"name":"Sakaki K","personType":"author"},{"name":"Tomioka A","personType":"author"},{"name":"Miyayama T","personType":"author"},{"name":"Konno M","personType":"author"},{"name":"Hayashi H","personType":"author"},{"personType":"author"}],"content":"Iwakuma M, Sakaki K, Tomioka A, Miyayama T, Konno M, Hayashi H, et al. Development of a 3 φ -66/6.9 kV-2 MVA REBCO superconducting transformer. IEEE Trans Appl Supercond 2015;25(3):5500206."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b24","label":"[24]","nian":2016,"citedCount":1,"citationList":[{"personList":[{"name":"Dai S","personType":"author"},{"name":"Ma T","personType":"author"},{"name":"Qiu Q","personType":"author"},{"name":"Zhu Z","personType":"author"},{"name":"Teng Y","personType":"author"},{"name":"Hu L","personType":"author"}],"content":"Dai S, Ma T, Qiu Q, Zhu Z, Teng Y, Hu L. Development of a 1250-kVA superconducting transformer and its demonstration at the superconducting substation. IEEE Trans Appl Supercond 2016; 26(1):5500107."}]},{"sourceEn":"Physica C (Amsterdam, Neth)","bodyP_ids":["mag_rich_body_p_2","mag_rich_body_p_3"],"publicationType":"journal","id":"b25","label":"[25]","nian":2017,"citedCount":2,"citationList":[{"personList":[{"name":"Hu D","personType":"author"},{"name":"Li Z","personType":"author"},{"name":"Hong Z","personType":"author"},{"name":"Jin Z","personType":"author"}],"content":"Hu D, Li Z, Hong Z, Jin Z. Development of a single-phase 330kVA HTS transformer using GdBCO tapes. Physica C (Amsterdam, Neth) 2017; 539:8-12."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b26","label":"[26]","nian":2019,"citedCount":1,"citationList":[{"personList":[{"name":"Hellmann S","personType":"author"},{"name":"Abplanalp M","personType":"author"},{"name":"Elschner S","personType":"author"},{"name":"Kudymow A","personType":"author"},{"name":"Noe M","personType":"author"}],"content":"Hellmann S, Abplanalp M, Elschner S, Kudymow A, Noe M. Current limitation experiments on a 1 MVA-class superconducting current limiting transformer. IEEE Trans Appl Supercond 2019; 29(5):5501706."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_2","mag_rich_body_p_3"],"publicationType":"journal","id":"b27","label":"[27]","nian":2023,"citedCount":2,"citationList":[{"personList":[{"name":"Zhao X","personType":"author"},{"name":"Fang J","personType":"author"},{"name":"Jiang Z","personType":"author"},{"name":"Song W","personType":"author"},{"name":"Liu N","personType":"author"},{"name":"Gao Y","personType":"author"},{"personType":"author"}],"content":"Zhao X, Fang J, Jiang Z, Song W, Liu N, Gao Y, et al. Design, development, and testing of a 6.6 MVA HTS traction transformer for high-speed train applications. Supercond Sci Technol 2023; 36(8):085009."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_2"],"publicationType":"journal","id":"b28","label":"[28]","nian":2005,"citedCount":1,"citationList":[{"personList":[{"name":"Kamijo H","personType":"author"},{"name":"Hata H","personType":"author"},{"name":"Fujimoto H","personType":"author"},{"name":"Ikeda K","personType":"author"},{"name":"Herai T","personType":"author"},{"name":"Sakaki K","personType":"author"},{"personType":"author"}],"content":"Kamijo H, Hata H, Fujimoto H, Ikeda K, Herai T, Sakaki K, et al. Fabrication of inner secondary winding of high-Tc superconducting traction transformer for railway rolling stock. IEEE Trans Appl Supercond 2005; 15(2):1875-8."}]},{"sourceEn":"Cryogenics","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b29","label":"[29]","nian":2020,"citedCount":1,"citationList":[{"personList":[{"name":"Moradnouri A","personType":"author"},{"name":"Vakilian M","personType":"author"},{"name":"Hekmati A","personType":"author"},{"name":"Fardmanesh M","personType":"author"}],"content":"Moradnouri A, Vakilian M, Hekmati A, Fardmanesh M. HTS transformers leakage flux and short circuit force mitigation through optimal design of auxiliary windings. Cryogenics 2020; 110:103148."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b30","label":"[30]","nian":2020,"citedCount":1,"citationList":[{"personList":[{"name":"Pi W","personType":"author"},{"name":"Wang T","personType":"author"},{"name":"Zhang H","personType":"author"},{"name":"Yang Y","personType":"author"},{"name":"Wang Y","personType":"author"}],"content":"Pi W, Wang T, Zhang H, Yang Y, Wang Y. Design and Simulation of a 120 kVA Single-Phase HTS Transformer. IEEE Trans Appl Supercond 2020; 30(4):5500305."}]},{"sourceEn":"Cryogenics","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b31","label":"[31]","nian":2021,"citedCount":1,"citationList":[{"personList":[{"name":"Yazdani-Asrami M","personType":"author"},{"name":"Gholamian SA","personType":"author"},{"name":"Mirimani SM","personType":"author"},{"name":"Adabi J","personType":"author"}],"content":"Yazdani-Asrami M, Gholamian SA, Mirimani SM, Adabi J. Influence of fielddependent critical current on harmonic AC loss analysis in HTS coils for superconducting transformers supplying non-linear loads. Cryogenics 2021; 113:103234."}]},{"sourceEn":"Cryogenics","bodyP_ids":["mag_rich_body_p_3","mag_rich_body_p_44","mag_rich_body_p_48","mag_rich_body_p_90"],"publicationType":"journal","id":"b32","label":"[32]","nian":2018,"citedCount":5,"citationList":[{"personList":[{"name":"Song W","personType":"author"},{"name":"Jiang Z","personType":"author"},{"name":"Zhang Z","personType":"author"},{"name":"Staines M","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Fang J","personType":"author"},{"personType":"author"}],"content":"Song W, Jiang Z, Zhang Z, Staines M, Badcock RA, Fang J, et al. AC loss simulation in a HTS 3-Phase 1 MVA transformer using H formulation. Cryogenics 2018; 94:14-21."}]},{"sourceEn":"International Journal of Electrical Power & Energy Systems","bodyP_ids":["mag_rich_body_p_3","mag_rich_body_p_82","mag_rich_body_p_84"],"publicationType":"journal","id":"b33","label":"[33]","nian":2020119,"citedCount":4,"citationList":[{"personList":[{"name":"Song W","personType":"author"},{"name":"Jiang Z","personType":"author"},{"name":"Staines M","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Zhang J","personType":"author"}],"content":"Song W, Jiang Z, Staines M, Badcock RA, Zhang J. Design of a single-phase 6.5 MVA/25 kV superconducting traction transformer for the Chinese Fuxing highspeed train. International Journal of Electrical Power & Energy Systems. 2020;119:105956."}]},{"sourceEn":"J Phys Commun","bodyP_ids":["mag_rich_body_p_3","mag_rich_body_p_4","mag_rich_body_p_61"],"publicationType":"journal","id":"b34","label":"[34]","nian":2021,"citedCount":4,"citationList":[{"personList":[{"name":"Jiang Z","personType":"author"},{"name":"Song W","personType":"author"},{"name":"Pei X","personType":"author"},{"name":"Fang J","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Wimbush SC","personType":"author"}],"content":"Jiang Z, Song W, Pei X, Fang J, Badcock RA, Wimbush SC. 15% reduction in AC loss of a 3-phase 1 MVA HTS transformer by exploiting asymmetric conductor critical current. J Phys Commun 2021; 5(2):025003."}]},{"sourceEn":"IEEE Trans Transp Electrif","bodyP_ids":["mag_rich_body_p_3","mag_rich_body_p_44","mag_rich_body_p_46"],"publicationType":"journal","id":"b35","label":"[35]","nian":2023,"citedCount":4,"citationList":[{"personList":[{"name":"Wu Y","personType":"author"},{"name":"Song W","personType":"author"},{"name":"Wimbush SC","personType":"author"},{"name":"Fang J","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Long NJ","personType":"author"},{"personType":"author"}],"content":"Wu Y, Song W, Wimbush SC, Fang J, Badcock RA, Long NJ, et al. Combined impact of asymmetric critical current and flux diverters on AC loss of a 6.5 MVA/ 25 kV HTS traction transformer. IEEE Trans Transp Electrif 2023; 9(1):1590-604."}]},{"sourceEn":"IEEE Transactions on Applied Superconductivity","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b36","label":"[36]","nian":2023,"citedCount":2,"citationList":[{"personList":[{"name":"Liao X","personType":"author"},{"name":"Fang J","personType":"author"},{"name":"Zhao X","personType":"author"},{"name":"Song W","personType":"author"},{"name":"Yang S","personType":"author"},{"name":"Sun Y","personType":"author"}],"content":"Liao X, Fang J, Zhao X, Song W, Yang S, Sun Y. Analysis of electromagnetic characteristics of 6.5 MVA/25 kV HTS traction transformer using T-A formulation. IEEE Transactions on Applied Superconductivity. 2023; 33(4):5900808."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b37","label":"[37]","nian":2004,"citedCount":1,"citationList":[{"personList":[{"name":"Kim S","personType":"author"},{"name":"Kim W","personType":"author"},{"name":"Min W","personType":"author"},{"name":"Park C","personType":"author"},{"name":"Lee S","personType":"author"},{"name":"Kim J","personType":"author"},{"personType":"author"}],"content":"Kim S, Kim W, Min W, Park C, Lee S, Kim J, et al. Analysis of perpendicular magnetic fields on a 1 MVA HTS transformer windings with flux diverters. IEEE Trans Appl Supercond 2004; 14(2):932-5."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b38","label":"[38]","nian":2006,"citedCount":1,"citationList":[{"personList":[{"name":"Li X","personType":"author"},{"name":"Chen Q","personType":"author"},{"name":"Hu G","personType":"author"},{"name":"Sun J","personType":"author"},{"name":"Long G","personType":"author"}],"content":"Li X, Chen Q, Hu G, Sun J, Long G. Numerical analysis on magnetic field of HTS transformer with different geometry. IEEE Trans Appl Supercond 2006; 42 (4):1343-6."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b39","label":"[39]","nian":2016,"citedCount":1,"citationList":[{"personList":[{"name":"Xing Y","personType":"author"},{"name":"Jin J","personType":"author"},{"name":"Du B","personType":"author"},{"name":"Sun R","personType":"author"},{"name":"Chen X","personType":"author"},{"name":"Li F","personType":"author"},{"personType":"author"}],"content":"Xing Y, Jin J, Du B, Sun R, Chen X, Li F, et al. Influence of flux diverter on magnetic field distribution for HTS transformer windings. IEEE Trans Appl Supercond 2016; 26(7):5501305."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_3"],"publicationType":"journal","id":"b40","label":"[40]","nian":2020,"citedCount":1,"citationList":[{"personList":[{"name":"Moradnouri A","personType":"author"},{"name":"Vakilian M","personType":"author"},{"name":"Hekmati A","personType":"author"},{"name":"Fardmanesh M","personType":"author"}],"content":"Moradnouri A, Vakilian M, Hekmati A, Fardmanesh M. Optimal design of flux diverter using genetic algorithm for axial short circuit force reduction in HTS transformers. IEEE Trans Appl Supercond 2020; 30(1):5500108."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_4"],"publicationType":"journal","id":"b41","label":"[41]","nian":2015,"citedCount":1,"citationList":[{"personList":[{"name":"Lai L","personType":"author"},{"name":"Gu C","personType":"author"},{"name":"Qu T","personType":"author"},{"name":"Zhang M","personType":"author"},{"name":"Li Y","personType":"author"},{"name":"Liu R","personType":"author"},{"personType":"author"}],"content":"Lai L, Gu C, Qu T, Zhang M, Li Y, Liu R, et al. Simulation of AC loss in small HTS coils with iron core. IEEE Trans Appl Supercond 2015; 25(3):4700905."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_4"],"publicationType":"journal","id":"b42","label":"[42]","nian":2020,"citedCount":1,"citationList":[{"personList":[{"name":"Xu X","personType":"author"},{"name":"Huang Z","personType":"author"},{"name":"Huang X","personType":"author"},{"name":"Hao L","personType":"author"},{"name":"Zhu J","personType":"author"},{"name":"Shen B","personType":"author"},{"personType":"author"}],"content":"Xu X, Huang Z, Huang X, Hao L, Zhu J, Shen B, et al. Numerical study on AC loss of an HTS coil placed on laminated silicon steel sheets with distorted AC transport currents. IEEE Trans Appl Supercond 2020; 30(4):4702105."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_4"],"publicationType":"journal","id":"b43","label":"[43]","nian":2019,"citedCount":2,"citationList":[{"personList":[{"name":"Li Y","personType":"author"},{"name":"Jiang Z","personType":"author"},{"name":"Sidorov G","personType":"author"},{"name":"Koraua R","personType":"author"},{"name":"Sogabe Y","personType":"author"},{"name":"Amemiya N","personType":"author"}],"content":"Li Y, Jiang Z, Sidorov G, Koraua R, Sogabe Y, Amemiya N. AC loss measurement in HTS coil windings coupled with iron core. IEEE Trans Appl Supercond 2019; 29 (5):4701805."}]},{"sourceEn":"Cryogenics","bodyP_ids":["mag_rich_body_p_4"],"publicationType":"journal","id":"b44","label":"[44]","nian":2022,"citedCount":2,"citationList":[{"personList":[{"name":"Chen W","personType":"author"},{"name":"Jin R","personType":"author"},{"name":"Wang S","personType":"author"},{"name":"Xu M","personType":"author"},{"name":"Che T","personType":"author"},{"name":"Shen B","personType":"author"},{"personType":"author"}],"content":"Chen W, Jin R, Wang S, Xu M, Che T, Shen B, et al. The effect of flux diverters on the AC loss of REBCO coil coupled with iron core. Cryogenics 2022; 128:103573."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_4","mag_rich_body_p_13"],"publicationType":"journal","id":"b45","label":"[45]","nian":2022,"citedCount":3,"citationList":[{"personList":[{"name":"Wu Y","personType":"author"},{"name":"Li X","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Long NJ","personType":"author"},{"name":"Amemiya N","personType":"author"},{"name":"Fang J","personType":"author"},{"personType":"author"}],"content":"Wu Y, Li X, Badcock RA, Long NJ, Amemiya N, Fang J, et al. AC loss simulation in HTS coil windings coupled with an iron core. IEEE Trans Appl Supercond 2022; 32 (6):4701505."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_4","mag_rich_body_p_13","mag_rich_body_p_38"],"publicationType":"journal","id":"b46","label":"[46]","nian":2022,"citedCount":4,"citationList":[{"personList":[{"name":"Vargas-Llanos CR","personType":"author"},{"name":"Huber F","personType":"author"},{"name":"Riva N","personType":"author"},{"name":"Zhang M","personType":"author"},{"name":"Grilli F","personType":"author"}],"content":"Vargas-Llanos CR, Huber F, Riva N, Zhang M, Grilli F. 3D homogenization of the TA formulation for the analysis of coils with complex geometries. Supercond Sci Technol 2022; 35(12):124001."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_4","mag_rich_body_p_44","mag_rich_body_p_48","mag_rich_body_p_49","mag_rich_body_p_53"],"publicationType":"journal","id":"b47","label":"[47]","nian":2015,"citedCount":6,"citationList":[{"personList":[{"name":"Pardo E","personType":"author"},{"name":"Staines M","personType":"author"},{"name":"Jiang Z","personType":"author"},{"name":"Glasson N","personType":"author"}],"content":"Pardo E, Staines M, Jiang Z, Glasson N. Ac loss modelling and measurement of superconducting transformers with coated-conductor Roebel-cable in low-voltage winding. Supercond Sci Technol 2015; 28(11):114008."}]},{"sourceEn":"IEEE Access","bodyP_ids":["mag_rich_body_p_13"],"publicationType":"journal","id":"b48","label":"[48]","nian":2023,"citedCount":1,"citationList":[{"personList":[{"name":"Wu Y","personType":"author"},{"name":"Fang J","personType":"author"},{"name":"Amemiya N","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Long NJ","personType":"author"},{"name":"Jiang Z","personType":"author"}],"content":"Wu Y, Fang J, Amemiya N, Badcock RA, Long NJ, Jiang Z. AC loss reduction in HTS coil windings coupled with an iron core using flux diverters. IEEE Access 2023; 11:48826-40."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_14"],"publicationType":"journal","id":"b49","label":"[49]","nian":2016,"citedCount":1,"citationList":[{"personList":[{"name":"Zhang H","personType":"author"},{"name":"Zhang M","personType":"author"},{"name":"Yuan W","personType":"author"}],"content":"Zhang H, Zhang M, Yuan W. An efficient 3D finite element method model based on the T-A formulation for superconducting coated conductors. Supercond Sci Technol 2016; 30(2):024005."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_14","mag_rich_body_p_32"],"publicationType":"journal","id":"b50","label":"[50]","nian":2021,"citedCount":2,"citationList":[{"personList":[{"name":"Berrospe-Juarez E","personType":"author"},{"name":"Trillaud F","personType":"author"},{"name":"Zermeño V","personType":"author"},{"name":"Grilli F","personType":"author"}],"content":"Berrospe-Juarez E, Trillaud F, Zermeño V, Grilli F. Advanced electromagnetic modeling of large-scale hightemperature superconductor systems based on H and T-A formulations. Supercond Sci Technol 2021; 34(4):044002."}]},{"sourceEn":"Phys Rev Lett","bodyP_ids":["mag_rich_body_p_23"],"publicationType":"journal","id":"b51","label":"[51]","nian":1962,"citedCount":1,"citationList":[{"personList":[{"name":"Kim YB","personType":"author"},{"name":"Hempstead CF","personType":"author"},{"name":"Strnad AR","personType":"author"}],"content":"Kim YB, Hempstead CF, Strnad AR. Critical persistent currents in hard superconductors. Phys Rev Lett 1962; 9:306-12."}]},{"sourceEn":"Magnetics_Inc, “MPP cores,” Available","bodyP_ids":["mag_rich_body_p_30","mag_rich_body_p_82"],"publicationType":"online","id":"b52","label":"[52]","nian":0,"citedCount":2,"citationList":[{"content":"Magnetics_Inc, “MPP cores,” Available: https://www.maginc.com/Products/Powder-Cores.","url":"https://www.maginc.com/Products/Powder-Cores"}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_30","mag_rich_body_p_82"],"publicationType":"journal","id":"b53","label":"[53]","nian":2020,"citedCount":2,"citationList":[{"personList":[{"name":"You S","personType":"author"},{"name":"Staines M","personType":"author"},{"name":"Sidorov G","personType":"author"},{"name":"Miyagi D","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Long NJ","personType":"author"},{"personType":"author"}],"content":"You S, Staines M, Sidorov G, Miyagi D, Badcock RA, Long NJ, et al. AC loss measurement and simulation in a REBCO coil assembly utilising low-loss magnetic flux diverters. Supercond Sci Technol 2020; 33(11):115011."}]},{"sourceEn":"Cryogenics","bodyP_ids":["mag_rich_body_p_30","mag_rich_body_p_82"],"publicationType":"journal","id":"b54","label":"[54]","nian":2022,"citedCount":4,"citationList":[{"personList":[{"name":"You S","personType":"author"},{"name":"Miyagi D","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Long NJ","personType":"author"},{"name":"Jiang Z","personType":"author"}],"content":"You S, Miyagi D, Badcock RA, Long NJ, Jiang Z. Experimental and numerical study on AC loss reduction in a REBCO coil assembly by applying high saturation field powdercore flux diverters. Cryogenics 2022; 124:103466."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_32"],"publicationType":"journal","id":"b55","label":"[55]","nian":2007,"citedCount":1,"citationList":[{"personList":[{"name":"Clem JR","personType":"author"},{"name":"Claassen JH","personType":"author"},{"name":"Mawatari Y","personType":"author"}],"content":"Clem JR, Claassen JH, Mawatari Y. AC losses in a finite Z stack using an anisotropic homogeneous-medium approximation. Supercond Sci Technol 2007; 20(12):1130-9."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_32"],"publicationType":"journal","id":"b56","label":"[56]","nian":2009,"citedCount":1,"citationList":[{"personList":[{"name":"Yuan W","personType":"author"},{"name":"Campbell A","personType":"author"},{"name":"Coombs T","personType":"author"}],"content":"Yuan W, Campbell A, Coombs T. A model for calculating the AC losses of secondgeneration high temperature superconductor pancake coils. Supercond Sci Technol 2009; 22(7):075028."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_32"],"publicationType":"journal","id":"b57","label":"[57]","nian":2019,"citedCount":1,"citationList":[{"personList":[{"name":"Berrospe-Juarez E","personType":"author"},{"name":"Zermeño VMR","personType":"author"},{"name":"Trillaud F","personType":"author"},{"name":"Grilli F","personType":"author"}],"content":"Berrospe-Juarez E, Zermeño VMR, Trillaud F, Grilli F. Real-time simulation of large-scale HTS systems: multi-scale and homogeneous models using the T-A formulation. Supercond Sci Technol 2019; 32(6):065003."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_32"],"publicationType":"journal","id":"b58","label":"[58]","nian":2022,"citedCount":1,"citationList":[{"personList":[{"name":"Zhou P","personType":"author"},{"name":"Santos G","personType":"author"},{"name":"Ghabeli A","personType":"author"},{"name":"Grilli F","personType":"author"},{"name":"Ma G","personType":"author"}],"content":"Zhou P, Santos G, Ghabeli A, Grilli F, Ma G. Coupling electromagnetic numerical models of HTS coils to electrical circuits: multi-scale and homogeneous methodologies using the T-A formulation. Supercond Sci Technol 2022; 35 (11):115005."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_43"],"publicationType":"journal","id":"b59","label":"[59]","nian":2020,"citedCount":1,"citationList":[{"personList":[{"name":"Zhang H","personType":"author"},{"name":"Yao M","personType":"author"},{"name":"Kails K","personType":"author"},{"name":"Machura P","personType":"author"},{"name":"Mueller M","personType":"author"},{"name":"Jiang Z","personType":"author"},{"personType":"author"}],"content":"Zhang H, Yao M, Kails K, Machura P, Mueller M, Jiang Z, et al. Modelling of electromagnetic loss in HTS coated conductors over a wide frequency band. Supercond Sci Technol 2020; 33(2):025004."}]},{"sourceEn":"Superconductor Science and Technology","bodyP_ids":["mag_rich_body_p_43"],"publicationType":"journal","id":"b60","label":"[60]","nian":2020,"citedCount":1,"citationList":[{"personList":[{"name":"Zhang H","personType":"author"},{"name":"Machura P","personType":"author"},{"name":"Kails K","personType":"author"},{"name":"Chen H","personType":"author"}],"content":"Zhang H, Machura P, Kails K, Chen H, Mueller Markus. Dynamic loss and magnetization loss of HTS coated conductors, stacks, and coils for high-speed synchronous machines. Superconductor Science and Technology 2020; 30 (8):084008."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_48"],"publicationType":"journal","id":"b61","label":"[61]","nian":2009,"citedCount":1,"citationList":[{"personList":[{"name":"Terzieva S","personType":"author"},{"name":"Vojenčiak M","personType":"author"},{"name":"Pardo E","personType":"author"},{"name":"Grilli F","personType":"author"},{"name":"Drechsler A","personType":"author"},{"name":"Kling A","personType":"author"},{"personType":"author"}],"content":"Terzieva S, Vojenčiak M, Pardo E, Grilli F, Drechsler A, Kling A, et al. Transport and magnetization ac losses of ROEBEL assembled coated conductor cables: measurements and calculations. Supercond Sci Technol 2009; 23(1):014023."}]},{"sourceEn":"Supercond Sci Technol","bodyP_ids":["mag_rich_body_p_48"],"publicationType":"journal","id":"b62","label":"[62]","nian":2010,"citedCount":2,"citationList":[{"personList":[{"name":"Jiang Z","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Long NJ","personType":"author"},{"name":"Staines M","personType":"author"},{"name":"Thakur KP","personType":"author"},{"name":"Lakshmi LS","personType":"author"},{"personType":"author"}],"content":"Jiang Z, Badcock RA, Long NJ, Staines M, Thakur KP, Lakshmi LS, et al. Transport AC loss characteristics of a nine strand YBCO Roebel cable. Supercond Sci Technol 2010; 23(2):025028."}]},{"sourceEn":"IEEE Access","bodyP_ids":["mag_rich_body_p_48"],"publicationType":"journal","id":"b63","label":"[63]","nian":2023,"citedCount":1,"citationList":[{"personList":[{"name":"Song W","personType":"author"},{"name":"Badcock RA","personType":"author"},{"name":"Long NJ","personType":"author"},{"name":"Jiang Z","personType":"author"}],"content":"Song W, Badcock RA, Long NJ, Jiang Z. AC loss in REBCO coil windings wound with various cables: effect of current distribution among the cable strands. IEEE Access 2023; 11:102082-91."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_55"],"publicationType":"journal","id":"b64","label":"[64]","nian":2010,"citedCount":1,"citationList":[{"personList":[{"name":"Li L","personType":"author"},{"name":"Cao J","personType":"author"},{"name":"Kou B","personType":"author"},{"name":"Yang S","personType":"author"},{"name":"Pan D","personType":"author"},{"name":"Zhu H","personType":"author"}],"content":"Li L, Cao J, Kou B, Yang S, Pan D, Zhu H. Design of axial and radial flux HTS permanent magnet synchronous motor's rotor. IEEE Trans Appl Supercond 2010; 20(3):1060-2."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_55"],"publicationType":"journal","id":"b65","label":"[65]","nian":2015,"citedCount":1,"citationList":[{"personList":[{"name":"Gao H","personType":"author"},{"name":"Wang Y","personType":"author"},{"name":"Xu D","personType":"author"},{"name":"Shi Y","personType":"author"},{"name":"Li Z","personType":"author"},{"name":"Jin Z","personType":"author"},{"personType":"author"}],"content":"Gao H, Wang Y, Xu D, Shi Y, Li Z, Jin Z, et al. Heating characteristics of a HTS DC induction heater for aluminum billets. IEEE Trans Appl Supercond 2015; 25 (3):4600904."}]},{"sourceEn":"Transformer Magzine","bodyP_ids":["mag_rich_body_p_59"],"publicationType":"journal","id":"b66","label":"[66]","nian":2016,"citedCount":1,"citationList":[{"personList":[{"name":"Staines M","personType":"author"},{"name":"Pannu M","personType":"author"},{"name":"Glasson N","personType":"author"},{"name":"Allpress N","personType":"author"}],"content":"Staines M, Pannu M, Glasson N, Allpress N. Superconducting transformers-Part I. Transformer Magzine 2016; 3:2."}]},{"sourceEn":"Power transformers part 1.2: minimum energy performance standard MEPS requirements for distribution transformers","bodyP_ids":["mag_rich_body_p_84"],"publicationType":"journal","id":"b67","label":"[67]","nian":2003,"citedCount":1,"citationList":[{"content":"Power transformers part 1.2: minimum energy performance standard MEPS requirements for distribution transformers, AS2374.1.2-2003, , 2003."}]},{"sourceEn":"IEEE Trans Appl Supercond","bodyP_ids":["mag_rich_body_p_92"],"publicationType":"journal","id":"b68","label":"[68]","nian":2012,"citedCount":1,"citationList":[{"personList":[{"name":"Jiang Z","personType":"author"},{"name":"Long NJ","personType":"author"},{"name":"Staines M","personType":"author"},{"name":"Li Q","personType":"author"},{"name":"Slade RA","personType":"author"},{"name":"Amemiya N","personType":"author"},{"personType":"author"}],"content":"Jiang Z, Long NJ, Staines M, Li Q, Slade RA, Amemiya N, et al. Transport AC loss measurements in single- and two-layer parallel coated conductor arrays with low turn numbers. IEEE Trans Appl Supercond 2012; 22(6):8200306."}]}],"tabList":[{"magId":"2ecab0a8-a606-44c0-8365-b2c2172e6f33","titleEn":"Table 1. Modelling parameters for a single phase in the 1 MVA transformer.","labelEn":"Table 1.","id":"T1","table":"
LV HV
Inner diameter of winding (mm) 310 345
Width of the conductor (mm) 12.1 4
Thickness of the conductor (mm) 0.8 0.22
Turn number in x direction 20 48
Turn number in z direction 1 19
Total turn number 20 912
Number of Roebel strand 15
Width of Roebel strand (mm) 5
Gap between Roebel stacks (mm) 2.1
Axial gap between turns, dts (mm) 2.1 2.13
Constant critical current, Ic (A) 2226 118.7
Amplitude of the rated current (A) 1964 42.9
","captionEn":"

Modelling parameters for a single phase in the 1 MVA transformer.

"},{"magId":"c10218fc-8df4-47b5-8d6e-20235717d15b","titleEn":"Table 2. Magnetic field dependence parameters and n values for the transformer windings.","labelEn":"Table 2.","id":"T2","table":"
Parameters LV HV
Jc0 (A/m2) 3.55 × 1010 2.12 × 1010
B0 (mT) 149 149
α 0.6 0.6
n 19 17
","captionEn":"

Magnetic field dependence parameters and n values for the transformer windings.

"},{"magId":"37459889-0488-48c6-a73f-49a3b9b714b8","titleEn":"Table 3. Design parameters of the three-limb iron core.","labelEn":"Table 3.","id":"T3","table":"
Iron core
Type Three-phase three-limbs
Diameter (mm) 225
Window height (mm) 910
Center distance between limbs (mm) 590
Effective sectional area (cm2) 350.6
Material Grain-oriented silicon steel
Flux density (T) 1.54
","captionEn":"

Design parameters of the three-limb iron core.

"},{"magId":"10a883e6-b312-4ee5-837d-541edce37436","titleEn":"Table 4. FD parameters used in different combinations for the 1 MVA transformer.","labelEn":"Table 4.","id":"T4","table":"
Parameter Combination 1 (FDs_C1) Combination 2 (FDs_C2)
WHV (mm) 8.18 8.18
HHV (mm) 8.18 8.18
We, HV (mm) 2 2
gHV (mm) 2 2
WLV (mm) 4.8 12.8
HLV (mm) 4.8 4.8
We, LV (mm) 2 6
gLV (mm) 2 2
","captionEn":"

FD parameters used in different combinations for the 1 MVA transformer.

"},{"magId":"1942834c-d13a-4cee-a7d7-5d7c3b76fbbd","titleEn":"Table 5. FD parameters used for the stand-alone LV winding.","labelEn":"Table 5.","id":"T5","table":"
Parameter FDs_1 FDs_2
WLV (mm) 4.8 12.8
HLV (mm) 4.8 4.8
We, LV (mm) 2 6
gLV (mm) 2 2
","captionEn":"

FD parameters used for the stand-alone LV winding.

"},{"magId":"2f12e9e0-80b7-4af1-93ef-2949c8680199","titleEn":"Table 6. Loss values of the stand-alone LV winding with the iron core and different FDs at Irated.","labelEn":"Table 6.","id":"T6","table":"
Stand-alone LV winding
Cases WIC WIC_FDs_1 WIC_FDs_2
Values (W) 354.1 296.5 234.5
","captionEn":"

Loss values of the stand-alone LV winding with the iron core and different FDs at Irated.

"},{"magId":"f811255e-cc7a-4acf-bd5c-7ab572bbc9b2","titleEn":"Table 7. Loss values of phase B with the iron core and different FDs at Irated.","labelEn":"Table 7.","id":"T7","table":"
Phase B
Cases WIC WIC_FDs_C1 WIC_FDs_C2
Values (W) 85.9 69 61.7
","captionEn":"

Loss values of phase B with the iron core and different FDs at Irated.

"}],"journal":{"issn":"2772-8307","qiKanWangZhi":"//www.sghhindu.com/www.qk/supercon","qiKanMingCheng_CN":"Superconductivity","id":27,"qiKanMingCheng_EN":"Superconductivity"},"authorList":[{"deceased":false,"xref":"a, b","name_cn":"Yue Wu","xref_en":"a, b","name_en":"Yue Wu"},{"deceased":false,"xref":"b","name_cn":"Shuangrong You","xref_en":"b","name_en":"Shuangrong You"},{"deceased":false,"xref":"a, *","name_cn":"Jin Fang","email":"jfang@bjtu.edu.cn","xref_en":"a, *","name_en":"Jin Fang"},{"deceased":false,"xref":"b","name_cn":"Rodney A. Badcock","xref_en":"b","name_en":"Rodney A. Badcock"},{"deceased":false,"xref":"b","name_cn":"Nicholas J. Long","xref_en":"b","name_en":"Nicholas J. Long"},{"deceased":false,"xref":"b, *","name_cn":"Zhenan Jiang","email":"zhenan.jiang@vuw.ac.nz","xref_en":"b, *","name_en":"Zhenan Jiang"}],"affList_en":["aSchool of Electrical Engineering, Beijing Jiaotong University, Beijing, China","bPaihau-Robinson Research Institute, Victoria University of Wellington, Wellington, New Zealand"],"authorNotes_en":["* E-mail addresses: jfang@bjtu.edu.cn (J. Fang),","zhenan.jiang@vuw.ac.nz (Z. Jiang)."],"figList":[{"magId":"d9d2e0da-4bd6-4868-a955-ddd4f85cc581","pptUrl":"2772-8307-10-0-100095/img_1.png.ppt","labelEn":"Fig. 1.","figUrl":"2772-8307-10-0-100095/img_1.png","titleEn":"Fig. 1. The prototype of the 3-phase HTS 1 MVA 11 kV/415 V transformer: (a) the layout of the HTS transformer, (b) low voltage (LV) winding, and (c) high voltage (HV) winding.","id":"F1","captionEn":"The prototype of the 3-phase HTS 1 MVA 11 kV/415 V transformer: (a) the layout of the HTS transformer, (b) low voltage (LV) winding, and (c) high voltage (HV) winding. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_1.png"},{"magId":"ad7e67a2-17b7-4a30-92b8-0e7f22f07871","pptUrl":"2772-8307-10-0-100095/img_2.png.ppt","labelEn":"Fig. 2.","figUrl":"2772-8307-10-0-100095/img_2.png","titleEn":"Fig. 2. Schematic of the HTS 1 MVA transformer consisting of 3-phase HV and LV windings and a three-limb iron core.","id":"F2","captionEn":"Schematic of the HTS 1 MVA transformer consisting of 3-phase HV and LV windings and a three-limb iron core. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_2.png"},{"magId":"97d81554-9887-45d4-9a35-e81a9f37e542","pptUrl":"2772-8307-10-0-100095/img_3.png.ppt","labelEn":"Fig. 3.","figUrl":"2772-8307-10-0-100095/img_3.png","titleEn":"Fig. 3. B-H curves of silicon steel GO 3423 and 3411 used in iron cores.","id":"F3","captionEn":"<i>B</i>-<i>H</i> curves of silicon steel GO 3423 and 3411 used in iron cores. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_3.png"},{"magId":"c9d343e4-0eb7-4b29-bd0e-6f4cbfc40d69","pptUrl":"2772-8307-10-0-100095/img_4.png.ppt","labelEn":"Fig. 4.","figUrl":"2772-8307-10-0-100095/img_4.png","titleEn":"Fig. 4. B-H curve of alloy powder core Hiflux 60 mu employed in flux diverters.","id":"F4","captionEn":"<i>B</i>-<i>H</i> curve of alloy powder core Hiflux 60 mu employed in flux diverters. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_4.png"},{"magId":"7540c7fa-70c5-4bb8-bea7-9a751e126a9e","pptUrl":"2772-8307-10-0-100095/img_5.png.ppt","labelEn":"Fig. 5.","figUrl":"2772-8307-10-0-100095/img_5.png","titleEn":"Fig. 5. Measured hysteresis loss of Highflux 60 mu at 77 K.","id":"F5","captionEn":"Measured hysteresis loss of Highflux 60 mu at 77 K. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_5.png"},{"magId":"8615694c-673e-4453-b935-d09d497c5204","pptUrl":"2772-8307-10-0-100095/img_6.png.ppt","labelEn":"Fig. 6.","figUrl":"2772-8307-10-0-100095/img_6.png","titleEn":"Fig. 6. Boundaries of the homogenous bulk.","id":"F6","captionEn":"Boundaries of the homogenous bulk. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_6.png"},{"magId":"980e3702-37c0-4267-80c8-22264b059bde","pptUrl":"2772-8307-10-0-100095/img_7.png.ppt","labelEn":"Fig. 7.","figUrl":"2772-8307-10-0-100095/img_7.png","titleEn":"Fig. 7. Structured meshes for a quarter model of the single-phase transformer windings (upper half): (a) meshes for the model, (b) meshes for the transformer windings, presented in an enlarged view.","id":"F7","captionEn":"Structured meshes for a quarter model of the single-phase transformer windings (upper half): (a) meshes for the model, (b) meshes for the transformer windings, presented in an enlarged view. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_7.png"},{"magId":"609a8f4b-aa4f-4629-89c4-10772cb6310d","pptUrl":"2772-8307-10-0-100095/img_8.png.ppt","labelEn":"Fig. 8.","figUrl":"2772-8307-10-0-100095/img_8.png","titleEn":"Fig. 8. Comparison of the simulated results in a single-phase transformer (TX) winding without the iron core with its experimental data (f = 50 Hz). WOIC stands for without the iron core.","id":"F8","captionEn":"Comparison of the simulated results in a single-phase transformer (TX) winding without the iron core with its experimental data (<i>f</i> = 50 Hz). WOIC stands for without the iron core. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_8.png"},{"magId":"e556ab6e-2544-47ca-890e-2f3c341d7d9e","pptUrl":"2772-8307-10-0-100095/img_9.png.ppt","labelEn":"Fig. 9.","figUrl":"2772-8307-10-0-100095/img_9.png","titleEn":"Fig. 9. Structured meshes for the 3-phase 1 MVA transformer with the three-limb iron core.","id":"F9","captionEn":"Structured meshes for the 3-phase 1 MVA transformer with the three-limb iron core. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_9.png"},{"magId":"2d0e4864-5714-491c-acb6-8d13b3591487","pptUrl":"2772-8307-10-0-100095/img_10.png.ppt","labelEn":"Fig. 10.","figUrl":"2772-8307-10-0-100095/img_10.png","titleEn":"Fig. 10. Rated currents in each phase of the transformer (f = 50 Hz): (a) applied currents in HV windings, (b) applied currents in LV windings.","id":"F10","captionEn":"Rated currents in each phase of the transformer (<i>f</i> = 50 Hz): (a) applied currents in HV windings, (b) applied currents in LV windings. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_10.png"},{"magId":"bac57af6-3dc4-44cb-b973-75b0f34a2511","pptUrl":"2772-8307-10-0-100095/img_11.png.ppt","labelEn":"Fig. 11.","figUrl":"2772-8307-10-0-100095/img_11.png","titleEn":"Fig. 11. Simulated AC losses of the stand-alone LV winding with/without the iron core (f = 50 Hz). WIC stands for with the iron core.","id":"F11","captionEn":"Simulated AC losses of the stand-alone LV winding with/without the iron core (<i>f</i> = 50 Hz). WIC stands for with the iron core. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_11.png"},{"magId":"4c91baec-95f5-4044-bf29-22b805510a9f","pptUrl":"2772-8307-10-0-100095/img_12.png.ppt","labelEn":"Fig. 12.","figUrl":"2772-8307-10-0-100095/img_12.png","titleEn":"Fig. 12. Loss in each disc of the stand-alone LV winding WIC/WOIC (f = 50 Hz, Irated = 1964 A).","id":"F12","captionEn":"Loss in each disc of the stand-alone LV winding WIC/WOIC (<i>f</i> = 50 Hz, <i>I</i><sub>rated</sub> <i>=</i> 1964 A). ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_12.png"},{"magId":"d73dfb2e-c74d-45dc-b325-de0f110d9822","pptUrl":"2772-8307-10-0-100095/img_13.png.ppt","labelEn":"Fig. 13.","figUrl":"2772-8307-10-0-100095/img_13.png","titleEn":"Fig. 13. Bperp distributions and magnetic flux lines of the end six discs in the stand-alone LV winding WIC/WOIC. (f = 50 Hz, Irated = 1964 A, t = 3/4 T): (a) WIC, and (b) WOIC. The red dashed rectangles highlight the area with a large perpendicular magnetic field.","id":"F13","captionEn":"<i>B</i><sub>perp</sub> distributions and magnetic flux lines of the end six discs in the stand-alone LV winding WIC/WOIC. (<i>f</i> = 50 Hz, <i>I</i><sub>rated</sub> <i>=</i> 1964 A, <i>t</i> = 3/4 <i>T</i>): (a) WIC, and (b) WOIC. The red dashed rectangles highlight the area with a large perpendicular magnetic field. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_13.png"},{"magId":"1310febe-3961-4468-a16c-b8c18cc18136","pptUrl":"2772-8307-10-0-100095/img_14.png.ppt","labelEn":"Fig. 14.","figUrl":"2772-8307-10-0-100095/img_14.png","titleEn":"Fig. 14. J/Jc distributions of the end six discs in the stand-alone LV winding WIC/WOIC (f = 50 Hz, Irated = 1964 A, t = 3/4 T): (a) WIC, and (b) WOIC.","id":"F14","captionEn":"<i>J</i>/<i>J</i><sub>c</sub> distributions of the end six discs in the stand-alone LV winding WIC/WOIC (<i>f</i> = 50 Hz, <i>I</i><sub>rated</sub> <i>=</i> 1964 A, <i>t</i> = 3/4 <i>T</i>): (a) WIC, and (b) WOIC. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_14.png"},{"magId":"3bf4808a-b47f-4770-9a7b-22fc0508fda0","pptUrl":"2772-8307-10-0-100095/img_15.png.ppt","labelEn":"Fig. 15.","figUrl":"2772-8307-10-0-100095/img_15.png","titleEn":"Fig. 15. AC losses of phase B WIC/WOIC (f = 50 Hz).","id":"F15","captionEn":"AC losses of phase B WIC/WOIC <i>(f</i> = 50 Hz). ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_15.png"},{"magId":"d3c56c62-fe60-4514-965a-be54625c19f0","pptUrl":"2772-8307-10-0-100095/img_16.png.ppt","labelEn":"Fig. 16.","figUrl":"2772-8307-10-0-100095/img_16.png","titleEn":"Fig. 16. Loss value of each disc within the HV and LV windings of phase B WIC/WOIC at Irated (f = 50 Hz): (a) HV winding, and (b) LV winding.","id":"F16","captionEn":"Loss value of each disc within the HV and LV windings of phase B WIC/WOIC at <i>I</i><sub>rated</sub> (<i>f</i> = 50 Hz): (a) HV winding, and (b) LV winding. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_16.png"},{"magId":"cf5f67de-f663-4b5d-b07c-2f0ab341e8a5","pptUrl":"2772-8307-10-0-100095/img_17.png.ppt","labelEn":"Fig. 17.","figUrl":"2772-8307-10-0-100095/img_17.png","titleEn":"Fig. 17. Bperp distributions and magnetic flux lines for phase B WIC/WOIC at Irated (f = 50 Hz, t = 3/4 T).","id":"F17","captionEn":"<i>B</i><sub>perp</sub> distributions and magnetic flux lines for phase B WIC/WOIC at <i>I</i><sub>rated</sub> (<i>f</i> = 50 Hz, <i>t</i> = 3/4 <i>T</i>). ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_17.png"},{"magId":"f3c07331-ec1a-4325-ab83-a24aa538dfc2","pptUrl":"2772-8307-10-0-100095/img_18.png.ppt","labelEn":"Fig. 18.","figUrl":"2772-8307-10-0-100095/img_18.png","titleEn":"Fig. 18. Comparisons of loss results between the stand-alone LV winding and phase B with different iron cores at various currents (f = 50 Hz).","id":"F18","captionEn":"Comparisons of loss results between the stand-alone LV winding and phase B with different iron cores at various currents (<i>f</i> = 50 Hz). ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_18.png"},{"magId":"5e469d49-f783-4713-9699-344d6e5c6ddc","pptUrl":"2772-8307-10-0-100095/img_19.png.ppt","labelEn":"Fig. 19.","figUrl":"2772-8307-10-0-100095/img_19.png","titleEn":"Fig. 19. Magnetic flux density distributions and flux lines of the stand-alone LV winding with different iron cores (f = 50 Hz, Irated = 1964 A, t = 3/4): (a) low saturation, and (b) high saturation.","id":"F19","captionEn":"Magnetic flux density distributions and flux lines of the stand-alone LV winding with different iron cores (<i>f</i> = 50 Hz, <i>I</i><sub>rated</sub> <i>=</i> 1964 A, <i>t</i> = 3/4): (a) low saturation, and (b) high saturation. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_19.png"},{"magId":"0e096e22-3cab-4d05-a6b5-5108ae687df4","pptUrl":"2772-8307-10-0-100095/img_20.png.ppt","labelEn":"Fig. 20.","figUrl":"2772-8307-10-0-100095/img_20.png","titleEn":"Fig. 20. The positions and dimensions of FDs attached to the ends of the HV and LV windings.","id":"F20","captionEn":"The positions and dimensions of FDs attached to the ends of the HV and LV windings. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_20.png"},{"magId":"9e495680-6c0f-485a-833f-d6d6f6f7b1cd","pptUrl":"2772-8307-10-0-100095/img_21.png.ppt","labelEn":"Fig. 21.","figUrl":"2772-8307-10-0-100095/img_21.png","titleEn":"Fig. 21. Bperp distributions and magnetic flux lines of the stand-alone LV winding with the iron core and different FDs (f = 50 Hz, Irated = 1964 A, t = 3/4): (a) WIC, (b) WIC_FDs_1, (c) WIC_FDs_2. The black dashed rectangles highlight the area with a large perpendicular magnetic field.","id":"F21","captionEn":"<i>B</i><sub>perp</sub> distributions and magnetic flux lines of the stand-alone LV winding with the iron core and different FDs (<i>f</i> = 50 Hz, <i>I</i><sub>rated</sub> <i>=</i> 1964 A, <i>t</i> = 3/4): (a) WIC, (b) WIC_FDs_1, (c) WIC_FDs_2. The black dashed rectangles highlight the area with a large perpendicular magnetic field. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_21.png"},{"magId":"4d191085-b6b0-4adc-b361-9678d9dc8ccb","pptUrl":"2772-8307-10-0-100095/img_22.png.ppt","labelEn":"Fig. 22.","figUrl":"2772-8307-10-0-100095/img_22.png","titleEn":"Fig. 22. Bperp distributions and magnetic flux lines of phase B with the iron core and different FDs at Irated (f = 50 Hz, t = 3/4): (a) WIC, (b) WIC_FDs_C1, (c) WIC_FDs_C2. The red and blue dashed rectangles highlight the area with a large perpendicular magnetic field.","id":"F22","captionEn":"<i>B</i><sub>perp</sub> distributions and magnetic flux lines of phase B with the iron core and different FDs at <i>I</i><sub>rated</sub> (<i>f</i> = 50 Hz, <i>t</i> = 3/4): (a) WIC, (b) WIC_FDs_C1, (c) WIC_FDs_C2. The red and blue dashed rectangles highlight the area with a large perpendicular magnetic field. ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_22.png"},{"magId":"b0704283-2d89-455f-a4eb-4b33510ba7f2","pptUrl":"2772-8307-10-0-100095/img_23.png.ppt","labelEn":"Fig. 23.","figUrl":"2772-8307-10-0-100095/img_23.png","titleEn":"Fig. 23. Loss dependency of phase B on dts with the iron core and FDs_C1 at Irated (f = 50 Hz).","id":"F23","captionEn":"Loss dependency of phase B on <i>d</i><sub>ts</sub> with the iron core and FDs_C1 at <i>I</i><sub>rated</sub> (<i>f</i> = 50 Hz). ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_23.png"},{"magId":"43d2c3e4-4cde-4a32-93df-b8e47db7ad12","pptUrl":"2772-8307-10-0-100095/img_24.png.ppt","labelEn":"Fig. 24.","figUrl":"2772-8307-10-0-100095/img_24.png","titleEn":"Fig. 24. AC loss values of each disc within the LV winding in phase B with the iron core and FDs_C1 for varied dts and Irated (f = 50 Hz).","id":"F24","captionEn":"AC loss values of each disc within the LV winding in phase B with the iron core and FDs_C1 for varied <i>d</i><sub>ts</sub> and <i>I</i><sub>rated</sub> (<i>f</i> = 50 Hz). ","thumbnailUrl":"2772-8307-10-0-100095/thumbnail/img_24.png"}],"article":{"juan":"10","endNoteUrl_en":"https://www.qk.sjtu.edu.cn/supercon/EN/article/getTxtFile.do?fileType=EndNote&id=48222","bibtexUrl_cn":"//www.sghhindu.com/www.qk/supercon/CN/article/getTxtFile.do?fileType=BibTeX&id=48222","articleType":"A","abstractUrl_en":"https://www.qk.sjtu.edu.cn/supercon/EN/10.1016/j.supcon.2024.100095","qi":"0","id":48222,"nian":2024,"bianHao":"1720084968166-932298104","juanUrl_en":"https://www.qk.sjtu.edu.cn/supercon/EN/Y2024","shouCiFaBuRiQi":"2024-04-13","qiShiYe":"100095","accepted":"2024-03-31","received":"2024-01-20","qiUrl_cn":"//www.sghhindu.com/www.qk/supercon/CN/Y2024/V10/I0","pdfSize":"4938KB","risUrl_cn":"//www.sghhindu.com/www.qk/supercon/CN/article/getTxtFile.do?fileType=Ris&id=48222","doi":"10.1016/j.supcon.2024.100095","jieShuYe":"","keywordList_en":["High-temperature superconducting transformer","T-A formulation","AC losses","Iron core","Flux diverters"],"endNoteUrl_cn":"//www.sghhindu.com/www.qk/supercon/CN/article/getTxtFile.do?fileType=EndNote&id=48222","zhaiyao_en":"

High-temperature superconducting (HTS) technology provides an alternative approach to achieve compact transformers. Addressing AC loss in the HTS winding is crucial for HTS transformer applications. Most numerical AC loss studies on HTS transformers have neglected the influence of iron cores. This work carries out an AC loss study to explore the impact of an iron core on the HTS windings in a 3-phase HTS 1 MVA transformer coupled with it. AC loss simulations for the transformer winding both with and without the iron core are conducted by adopting the three-dimensional (3D) T-A homogenization method. When the iron core is incorporated, the saturation magnetic fields of iron materials, flux diverters (FDs) with different geometries, and variations in turn spacings in the LV winding composed of Roebel cables are considered to investigate their influence on the AC loss of the transformer winding. The inclusion of the iron core leads to a 1.2% increase in AC loss for the transformer winding while simulating at the rated current. We attribute this slight difference to the non-inductive winding structure of the transformer winding, where a strong magnetic field generated in the space between the LV and HV windings effectively shields the influence of the iron core.

","bibtexUrl_en":"https://www.qk.sjtu.edu.cn/supercon/EN/article/getTxtFile.do?fileType=BibTeX&id=48222","abstractUrl_cn":"https://www.qk.sjtu.edu.cn/supercon/CN/10.1016/j.supcon.2024.100095","juanUrl_cn":"https://www.qk.sjtu.edu.cn/supercon/CN/Y2024","lanMu_en":"Research article","qiUrl_en":"https://www.qk.sjtu.edu.cn/supercon/EN/Y2024/V10/I0","risUrl_en":"https://www.qk.sjtu.edu.cn/supercon/EN/article/getTxtFile.do?fileType=Ris&id=48222","title_en":"AC loss study on a 3-phase HTS 1 MVA transformer coupled with a three-limb iron core","revised":"2024-03-26","hasPdf":"true"},"authorList_en":[{"deceased":false,"xref":"a, b","name_cn":"Yue Wu","xref_en":"a, b","name_en":"Yue Wu"},{"deceased":false,"xref":"b","name_cn":"Shuangrong You","xref_en":"b","name_en":"Shuangrong You"},{"deceased":false,"xref":"a, *","name_cn":"Jin Fang","email":"jfang@bjtu.edu.cn","xref_en":"a, *","name_en":"Jin Fang"},{"deceased":false,"xref":"b","name_cn":"Rodney A. Badcock","xref_en":"b","name_en":"Rodney A. Badcock"},{"deceased":false,"xref":"b","name_cn":"Nicholas J. Long","xref_en":"b","name_en":"Nicholas J. Long"},{"deceased":false,"xref":"b, *","name_cn":"Zhenan Jiang","email":"zhenan.jiang@vuw.ac.nz","xref_en":"b, *","name_en":"Zhenan Jiang"}]}">

AC loss study on a 3-phase HTS 1 MVA transformer coupled with a three-limb iron core

Yue Wu, Shuangrong You, Jin Fang, Rodney A. Badcock, Nicholas J. Long, Zhenan Jiang

Superconductivity››2024, Vol. 10››Issue (0): 100095.

PDF(4938 KB)
PDF(4938 KB)
Superconductivity ›› 2024, Vol. 10 ›› Issue (0) : 100095. DOI: 10.1016/j.supcon.2024.100095

    {{javascript:window.custom_author_cn_index=0;}}
  • {{article.zuoZhe_CN}}
作者信息 +

AC loss study on a 3-phase HTS 1 MVA transformer coupled with a three-limb iron core

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
文章历史 +

本文亮点

{{article.keyPoints_cn}}

HeighLight

{{article.keyPoints_en}}

摘要

{{article.zhaiyao_cn}}

Abstract

{{article.zhaiyao_en}}

关键词

Key words

本文二维码

引用本文

导出引用
{{article.zuoZheCn_L}}.{{article.title_cn}}[J]. {{journal.qiKanMingCheng_CN}}, 2024, 10(0): 100095 https://doi.org/10.1016/j.supcon.2024.100095
{{article.zuoZheEn_L}}.{{article.title_en}}[J]. {{journal.qiKanMingCheng_EN}}, 2024, 10(0): 100095 https://doi.org/10.1016/j.supcon.2024.100095
中图分类号:

参考文献

参考文献

{{article.reference}}

基金


编委:
主编:
责任编辑:
编辑:

版权

{{article.copyrightStatement_cn}}
{{article.copyrightLicense_cn}}
PDF(4938 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map