
Journal of Surgery Concepts & Practice››2023,Vol. 28››Issue (06): 563-567.doi:10.16139/j.1007-9610.2023.06.013
• Review •Previous ArticlesNext Articles
HE Xi, SHI Yuan, QIAN Kai, WANG Zhuoying
Received:2023-11-13Online:2023-11-25Published:2024-03-04CLC Number:
HE Xi, SHI Yuan, QIAN Kai, WANG Zhuoying. Advances of protein lysine methyltransferases in thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 563-567.
| [1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249. doi:10.3322/caac.v71.3URL |
| [2] | ZHENG R S, ZHANG S W, ZENG HW, et al. Cancer incidence and mortality in China, 2016[J].J National Cancer Center,2022,2(1):1-9. doi:10.1016/j.jncc.2022.02.002URL |
| [3] | DAWSON M A, KOUZARIDES T. Cancer epigenetics: from mechanism to therapy[J].Cell,2012,150(1):12-27. doi:10.1016/j.cell.2012.06.013pmid:22770212 |
| [4] | BHATTACHARYYA S, MATTIROLI F, LUGER K. Archaeal DNA on the histone merry-go-round[J].FEBS J,2018,285(17):3168-3174. doi:10.1111/febs.14495pmid:29729078 |
| [5] | BAE W K, HENNIGHAUSEN L. Canonical and non-canonical roles of the histone methyltransferase EZH2 in mammary development and cancer[J].Mol Cell Endocrinol,2014,382(1):593-597. doi:S0303-7207(13)00205-0pmid:23684884 |
| [6] | BORBONE E, TRONCONE G, FERRARO A, et al. Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas[J].J Clin Endocrinol Metab,2011,96(4):1029-1038. doi:10.1210/jc.2010-1784pmid:21289264 |
| [7] | GUO K, QIAN K, SHI Y, et al. LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p[J].Cell Death Dis,2021,12(12):1097. doi:10.1038/s41419-021-04386-0pmid:34811354 |
| [8] | XUE L, YAN H, CHEN Y, et al. EZH2 upregulation by ERα induces proliferation and migration of papillary thyroid carcinoma[J].BMC Cancer,2019,19(1):1094. doi:10.1186/s12885-019-6306-9pmid:31718595 |
| [9] | SPONZIELLO M, DURANTE C, BOICHARD A, et al. Epigenetic-related gene expression profile in medullary thyroid cancer revealed the overexpression of the histone methyltransferases EZH2 and SMYD3 in aggressive tumours[J].Mol Cell Endocrinol,2014,392(1-2):8-13. doi:10.1016/j.mce.2014.04.016pmid:24813658 |
| [10] | TSAI C C, CHIEN M N, CHANG Y C, et al. Overexpression of histone H3 lysine 27 trimethylation is associated with aggressiveness and dedifferentiation of thyroid cancer[J].Endocr Pathol,2019,30(4):305-311. doi:10.1007/s12022-019-09586-1 |
| [11] | WANG Z, DAI J, YAN J, et al. Targeting EZH2 as a novel therapeutic strategy for sorafenib-resistant thyroid carcinoma[J].J Cell Mol Med,2019,23(7):4770-4778. doi:10.1111/jcmm.14365pmid:31087496 |
| [12] | DE MELLO D C, SAITO K C, CRISTOVÃO M M, et al. Modulation of EZH2 activity induces an antitumoral effect and cell redifferentiation in anaplastic thyroid cancer[J].Int J Mol Sci,2023,24(9):7872. doi:10.3390/ijms24097872URL |
| [13] | 梁碧君, 李湘平, 鲁娟, 等. EZH2对鼻咽癌细胞增殖和侵袭影响的研究[J].中华耳鼻咽喉头颈外科杂志,2012,47(4):298-304. |
| LIANG B J, LI X P, LU J, et al. Study on the effect of EZH2 on the proliferation and invasion of nasopharyngeal cancer cells[J].Chin J Otorhinolaryngol Head Neck Surg,2012,47(4):298-304. | |
| [14] | SI Y, WEN J, HU C, et al. LINC00891 promotes tumorigenesis and metastasis of thyroid cancer by regulating SMAD2/3viaEZH2[J].Curr Med Chem,2023. |
| [15] | DE MARTINO M, PELLECCHIA S, DECAUSSIN-PETRUCCI M, et al. Drug-induced inhibition of HMGA and EZH2 activity as a possible therapy for anaplastic thyroid carcinoma[J].Cell Cycle,2024:1-14. |
| [16] | ZHANG C, HUA Y, QIU H, et al. KMT2A regulates cervical cancer cell growth through targeting VDAC1[J].Aging (Albany NY),2020,12(10):9604-9620. |
| [17] | ZHAO D, YUAN H, FANG Y, et al. Histone methyltransferase KMT2B promotes metastasis and angiogenesis of cervical cancer by upregulating EGF expression[J].Int J Biol Sci,2023,19(1):34-49. doi:10.7150/ijbs.72381pmid:36594087 |
| [18] | FENG J F, WANG J, XIE G, et al. KMT2B promotes the growth of renal cell carcinomaviaupregulation of SNHG12 expression and promotion of CEP55 transcription[J].Cancer Cell Int,2022,22(1):197. doi:10.1186/s12935-022-02607-w |
| [19] | SIERRA J, YOSHIDA T, JOAZEIRO C A, et al. The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes[J].Genes Dev,2006,20(5):586-600. doi:10.1101/gad.1385806URL |
| [20] | COLAMAIO M, PUCA F, RAGOZZINO E, et al. MiR-142-3p down-regulation contributes to thyroid follicular tumorigenesis by targeting ASH1L and MLL1[J].J Clin Endocrinol Metab,2015,100(1):E59-E69. doi:10.1210/jc.2014-2280URL |
| [21] | FAGAN R J, DINGWALL A K. COMPASS ascending: emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer[J].Cancer Lett,2019,458:56-65. doi:S0304-3835(19)30319-2pmid:31128216 |
| [22] | NA F, PAN X, CHEN J, et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming[J].Nat Cancer,2022,3(6):753-767. doi:10.1038/s43018-022-00361-6 |
| [23] | ALAM H, TANG M, MAITITUOHETI M, et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer[J].Cancer Cell,2020,37(4):599-617.e7. doi:S1535-6108(20)30106-9pmid:32243837 |
| [24] | CHO S J, YOON C, LEE J H, et al. KMT2C mutations in diffuse-type gastric adenocarcinoma promote epithelial-to-mesenchymal transition[J].Clin Cancer Res,2018,24(24):6556-6569. doi:10.1158/1078-0432.CCR-17-1679URL |
| [25] | NIEMINEN T T, WALKER C J, OLKINUORA A, et al. Thyroid carcinomas that occur in familial adenomatous polyposis patients recurrently harbor somatic variants in APC, BRAF, and KTM2D[J].Thyroid,2020,30(3):380-388. doi:10.1089/thy.2019.0561URL |
| [26] | SONG J, LIU Y, CHEN Q, et al. Expression patterns and the prognostic value of the SMYD family members in human breast carcinoma using integrative bioinformatics analysis[J].Oncol Lett,2019,17(4):3851-3861. doi:10.3892/ol.2019.10054pmid:30930987 |
| [27] | KOMATSU S, ICHIKAWA D, HIRAJIMA S, et al. Overexpression of SMYD2 contributes to malignant outcome in gastric cancer[J].Br J Cancer,2015,112(2):357-364. doi:10.1038/bjc.2014.543 |
| [28] | XU W, CHEN F, FEI X, et al. Overexpression of SET and MYND domain-containing protein 2 (SMYD2) is associated with tumor progression and poor prognosis in patients with papillary thyroid carcinoma[J].Med Sci Monit,2018,24:7357-7365. doi:10.12659/MSM.910168URL |
| [29] | HUANG J, PEREZ-BURGOS L, PLACEK B J, et al. Repression of p53 activity by Smyd2-mediated methylation[J].Nature,2006,444(7119):629-632. doi:10.1038/nature05287 |
| [30] | TANG M, CHEN G, TU B, et al. SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity[J].Sci Adv,2023,9(24):eade6624. doi:10.1126/sciadv.ade6624URL |
| [31] | HAMAMOTO R, SILVA F P, TSUGE M, et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells[J].Cancer Sci,2006,97(2):113-118. doi:10.1111/cas.2006.97.issue-2URL |
| [32] | ZHU Y, ZHU M X, ZHANG X D, et al. SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma[J].Hum Pathol,2016,52:153-163. doi:10.1016/j.humpath.2016.01.012pmid:26980013 |
| [33] | KUNIZAKI M, HAMAMOTO R, SILVA F P, et al. The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3[J].Cancer Res,2007,67(22):10759-10765. doi:10.1158/0008-5472.CAN-07-1132pmid:18006819 |
| [34] | RUBIO-TOMÁS T. Novel insights into SMYD2 and SMYD3 inhibitors: from potential anti-tumoural therapy to a variety of new applications[J].Mol Biol Rep,2021,48(11):7499-7508. doi:10.1007/s11033-021-06701-6 |
| [35] | SHANG L, WEI M. Inhibition of SMYD2 sensitized cisplatin to resistant cells in NSCLC through activating p53 pathway[J].Front Oncol,2019,9:306. doi:10.3389/fonc.2019.00306pmid:31106145 |
| [36] | FAN Y, FAN X, YAN H, et al. Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis[J].Cell Death Dis,2022,13(2):157. doi:10.1038/s41419-021-04210-9pmid:35173149 |
| [37] | LIAO T, WANG Y J, HU J Q, et al. Histone methyltransferase KMT5A gene modulates oncogenesis and lipid metabolism of papillary thyroid cancer in vitro[J].Oncol Rep,2018,39(5):2185-2192. |
| [1] | TANG Linglin, LI Li, LAI Yi, LIU Jianjun, ZHOU Xiang.Analysis of tumor recurrence factors of the patients with intermediate risk papillary thyroid carcinoma after radioactive iodine treatment[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 536-539. |
| [2] | CAI Xiaoyu, ZHANG Ruiguo, HU Yujing, WANG Renfei, BIAN Yanzhu.Papillary thyroid microcarcinoma should not be used as the basis for postoperative131I therapy[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 529-535. |
| [3] | LIAO Zhenyu, ZHAO Qiwu, KUANG Jie, LIU Zhuoran, SUN Hanxing, WANG Yue, QIU Weihua, CHEN Xi, YAN Jiqi.Study on invasive histopathological features of papillary thyroid carcinoma with tall cell variant[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 524-528. |
| [4] | LIU Wei.Combination of targeted multikinase inhibitor and radioiodine: a new strategy of treatment for advanced differentiated thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 520-523. |
| [5] | LIU Jie, XIAN Keyao.Consensus and controversy in postoperative thyroid stimulating hormone suppression therapy for differentiated thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 507-511. |
| [6] | LIU Zhiyan, YU Yaling, KAKUDO Kennichi.Update of pathology in medullary thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 501-506. |
| [7] | WANG Zhuoying, SHI Yuan, GUO Kai, QIAN Kai.Challenges and opportunities in the diagnosis and treatment of thyroid carcinoma in children and young adolescents[J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 496-500. |
| [8] | KONG Weiqi, HE Jun, YANG Chengguang, LIU Weiwei, XU Yingjie.Pheochromocytoma with papillary thyroid carcinoma: one case report[J]. Journal of Surgery Concepts & Practice, 2023, 28(02): 162-165. |
| [9] | YAN Haibo, XIA Zhongping, CHEN Shan, JIANG Lin, HAN Chun.Risk factors for Delphian lymph node metastasis in papillary thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2022, 27(05): 453-457. |
| [10] | WANG Wenhan, XIA Shujun, ZHAN Weiwei.Application of long non-coding RNA ENST00000489676 detection in ultrasonographic evaluation of cervical lymph node metastasis in papillary thyroid carcinoma[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 514-519. |
| [11] | CHEN Chengkun, GUO Bomin, DENG Xianzhao, WU Bo, FAN Youben.Diagnosis and treatment of medullary thyroid carcinoma-an update[J]. Journal of Surgery Concepts & Practice, 2022, 27(03): 276-280. |
| [12] | LI Rui, LIU Zhuoran, YAN Jiqi.Progress of study on medullary thyroid carcinoma with serum calcitonin-negative and large mass[J]. Journal of Surgery Concepts & Practice, 2022, 27(03): 271-275. |
| [13] | XU Chenying, LI Yanran, NI Xiaofeng, XU Shangyan, LIN Qing.Efficacy of ultrasonic examination in predicting cervical lymph node metastasis in elderly patients with papillary thyroid carcinoma and analysis of related ultrasound signs[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 343-348. |
| [14] | LIU Rongyao, LI Xiangcui, WANG Lina, CHEN Haizhen.Analysis of risk factors for cervical lymph node metastasis in papillary thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2022, 27(01): 76-79. |
| [15] | ZHANG Gang, ZHANG Zhe, ZHANG Shu, LI Zhirong, TIAN Wuguo, HUANG Qi, WANG Lingli, XU Yan.Association between RET genotype and disease phenotype in patients with hereditary medullary thyroid carcinoma[J]. Journal of Surgery Concepts & Practice, 2021, 26(06): 522-527. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||