| [1] |
Järvinen HJ, Aarnio M, Mustonen H, et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer[J]. Gastroenterology, 2000, 118(5):829-834. pmid:10784581 |
| [2] |
Choi YJ, Oh HR, Choi MR, et al. Frameshift mutation of a histone methylation-related gene SETD1B and its regional heterogeneity in gastric and colorectal cancers with high microsatellite instability[J]. Hum Pathol, 2014, 45(8):1674-1681. doi:10.1016/j.humpath.2014.04.013URL |
| [3] |
Faber PW, Barnes GT, Srinidhi J, et al. Huntingtin interacts with a family of WW domain proteins[J]. Hum Mol Genet, 1998, 7(9):1463-1474. pmid:9700202 |
| [4] |
Yuan W, Xie J, Long C, et al. Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo[J]. J Biol Chem, 2009, 284(23):15701-15707. doi:10.1074/jbc.M808431200pmid:19332550 |
| [5] |
Sun XJ, Wei J, Wu XY, et al. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase[J]. J Biol Chem, 2005, 280(42):35261-35271. doi:10.1074/jbc.M504012200URL |
| [6] |
Wang S, Yuan X, Liu Y, et al. Genetic polymorphisms of histone methyltransferase SETD2 predicts prognosis and chemotherapy response in Chinese acute myeloid leukemia patients[J]. J Transl Med, 2019, 17(1):101. doi:10.1186/s12967-019-1848-9URL |
| [7] |
Kim IK, McCutcheon JN, Rao G, et al. Acquired SETD2 mutation and impaired CREB1 activation confer cisplatin resistance in metastatic non-small cell lung cancer[J]. Oncogene, 2019, 38(2):180-193. doi:10.1038/s41388-018-0429-3URL |
| [8] |
Chen Z, Raghoonundun C, Chen W, et al. SETD2 indicates favourable prognosis in gastric cancer and suppresses cancer cell proliferation, migration, and invasion[J]. Biochem Biophys Res Commun, 2018, 498(3):579-585. doi:10.1016/j.bbrc.2018.03.022URL |
| [9] |
Lowe BR, Maxham LA, Hamey JJ, et al. Histone H3 mutations: an updated view of their role in chromatin dere-gulation and cancer[J]. Cancers (Basel), 2019, 11(5):pii: E660. |
| [10] |
Walter DM, Venancio OS, Buza EL, et al. Systematic in vivo inactivation of chromatin-regulating enzymes identifies Setd2 as a potent tumor suppressor in lung adenocarcinoma[J]. Cancer Res, 2017, 77(7):1719-1729. doi:10.1158/0008-5472.CAN-16-2159pmid:28202515 |
| [11] |
Carrozza MJ, Li B, Florens L, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription[J]. Cell, 2005, 123(4):581-592. pmid:16286007 |
| [12] |
Carvalho S, Raposo AC, Martins FB, et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription[J]. Nucleic Acids Res, 2013, 41(5):2881-2893. doi:10.1093/nar/gks1472pmid:23325844 |
| [13] |
Li F, Mao G, Tong D, et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its inte-raction with MutSa[J]. Cell, 2013, 153(3):590-600. doi:10.1016/j.cell.2013.03.025URL |
| [14] |
Li L, Miao W, Huang M, et al. Integrated genomic and proteomic analyses reveal novel mechanisms of the methyltransferase SETD2 in renal cell carcinoma deve-lopment[J]. Mol Cell Proteomics, 2019, 18(3):437-447. doi:10.1074/mcp.RA118.000957URL |
| [15] |
Carvalho S, Vítor AC, Sridhara SC, et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint[J]. Elife, 2014, 3:e02482. doi:10.7554/eLife.02482URL |
| [16] |
Yuan H, Li N, Fu D, et al. Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis[J]. J Clin Invest, 2017, 127(9):3375-3391. doi:10.1172/JCI94292URL |