
Journal of Internal Medicine Concepts & Practice››2025,Vol. 20››Issue (04): 328-333.doi:10.16138/j.1673-6087.2025.04.13
• Review •Previous ArticlesNext Articles
FAN Yuxin, BIN Zexuan, ZHANG Xin, LUO Jing, WANG Caihong(
)
Received:2024-10-21Online:2025-07-31Published:2025-10-27CLC Number:
FAN Yuxin, BIN Zexuan, ZHANG Xin, LUO Jing, WANG Caihong. Advances in age-associated B cell in systemic lupus erythematosus[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 328-333.
| [1] | Dai D, Gu S, Han X, et al. The transcription factor ZEB2 drives the formation of age-associated B cells[J].Science,2024,383(6681):413-421. doi:10.1126/science.adf8531pmid:38271512 |
| [2] | Wang S, Wang J, Kumar V, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+B cells in SLE[J].Nat Commun,2018,9(1):1758. doi:10.1038/s41467-018-03750-7pmid:29717110 |
| [3] | Ambegaonkar AA, Holla P, Dizon BL, et al. Atypical B cells in chronic infectious diseases and systemic autoimmunity[J].Curr Opin Immunol,2022,77:102227. |
| [4] | Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants[J].Nat Rev Nephrol,2023,19(9):558-572. |
| [5] | Zhang W, Zhang H, Liu S, et al. Excessive CD11c+Tbet+B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupus[J].Proc Natl Acad Sci USA,2019,116(37):18550-18560. |
| [6] | Nickerson KM, Smita S, Hoehn KB, et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice[J].J Exp Med,2023,220(5):e20221346. |
| [7] | Atisha-Fregoso Y, Toz B, Diamond B. Meant to B: B cells as a therapeutic target in systemic lupus erythematosus[J].J Clin Invest,2021,131(12):e149095. |
| [8] | Rubtsov AV, Rubtsova K, Fischer A, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c⁺ B-cell population is important for the development of autoimmunity[J].Blood,2011,118(5):1305-1315. doi:10.1182/blood-2011-01-331462pmid:21543762 |
| [9] | Hao Y, O’Neill P, Naradikian MS, et al. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice[J].Blood,2011,118(5):1294-1304. doi:10.1182/blood-2011-01-330530pmid:21562046 |
| [10] | Sachinidis A, Xanthopoulos K, Garyfallos A. Age-associated B cells (ABCs) in the prognosis, diagnosis and therapy of systemic lupus erythematosus (SLE)[J].Mediterr J Rheumatol,2020,31(3):311-318. doi:10.31138/mjr.31.3.311pmid:33163863 |
| [11] | Rubtsov AV, Rubtsova K, Kappler JW, et al. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice[J].Immunol Res,2013,55(1-3):210-216. doi:10.1007/s12026-012-8365-8pmid:22945807 |
| [12] | Naradikian MS, Myles A, Beiting DP, et al. Cutting edge: IL-4, IL-21, and IFN-γ interact to govern T-bet and CD11c expression in TLR-activated B cells[J].J Immunol,2016,197(4):1023-1028. doi:10.4049/jimmunol.1600522pmid:27430719 |
| [13] | Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases[J].Cell Mol Life Sci,2022,79(8):402. doi:10.1007/s00018-022-04433-9pmid:35798993 |
| [14] | Jin W, Luo Z, Yang H. Peripheral B cell subsets in autoimmune diseases: clinical implications and effects of B cell-targeted therapies[J].J Immunol Res,2020,2020:9518137. |
| [15] | Winslow GM, Levack R. Know your ABCs: discovery, differentiation, and targeting of T-bet+B cells[J].Immunol Rev,2025,330(1):e13440. |
| [16] | Rubtsov AV, Rubtsova K, Kappler JW, et al. CD11c-expressing B cells are located at the T Cell/B cell border in spleen and are potent APCs[J].J Immunol,2015,195(1):71-79. doi:10.4049/jimmunol.1500055pmid:26034175 |
| [17] | Gao X, Cockburn IA. The development and function of CD11c+atypical B cells-insights from single cell analysis[J].Front Immunol,2022,13:979060. |
| [18] | Ueno H. The IL-12-STAT4 axis in the pathogenesis of human systemic lupus erythematosus[J].Eur J Immunol,2020,50(1):10-16. doi:10.1002/eji.201948134pmid:31762023 |
| [19] | Ricker E, Manni M, Flores-Castro D, et al. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice[J].Nat Commun,2021,12(1):4813. doi:10.1038/s41467-021-25102-8pmid:34376664 |
| [20] | von Hofsten S, Fenton KA, Pedersen HL. Human and murine toll-like receptor-driven disease in systemic lupus erythematosus[J].Int J Mol Sci,2024,25(10):5351. |
| [21] | Brown GJ, Cañete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J].Nature,2022,605(7909):349-356. |
| [22] | Liu Y, Zhou S, Qian J, et al. T-bet+CD11c+B cells are critical for antichromatin immunoglobulin G production in the development of lupus[J].Arthritis Res Ther,2017,19(1):225. doi:10.1186/s13075-017-1438-2pmid:28982388 |
| [23] | Manion K, Muñoz-Grajales C, Kim M, et al. Different immunologic profiles are associated with distinct clinical phenotypes in longitudinally observed patients with systemic lupus erythematosus[J].Arthritis Rheumatol,2024,76(5):726-738. |
| [24] | Faustini F, Sippl N, Stålesen R, et al. Rituximab in systemic lupus erythematosus: transient effects on autoimmunity associated lymphocyte phenotypes and implications for immunogenicity[J].Front Immunol,2022,13:826152. |
| [25] | Wu C, Jiang S, Chen Z, et al. Single-cell transcriptomics reveal potent extrafollicular B cell response linked with granzyme K+CD8 T cell activation in lupus kidney[J].Ann Rheum Dis,2024. [Epub ahead of print]. |
| [26] | Zhou S, Li Q, Zhou S, et al. A novel humanized cutaneous lupus erythematosus mouse model mediated by IL-21-induced age-associated B cells[J].J Autoimmun,2021,123:102686. |
| [27] | Poe JC, Fang J, Zhang D, et al. Single-cell landscape analysis unravels molecular programming of the human B cell compartment in chronic GVHD[J].JCI Insight,2023,8(11):e169732. |
| [28] | Caielli S, Wan Z, Pascual V. Systemic lupus erythematosus pathogenesis: Interferon and beyond[J].Annu Rev Immunol,2023,41(1):533-560. |
| [29] | Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus[J].Nat Rev Rheumatol,2020,17(2):98-108. |
| [30] | Li F, Song B, Zhou WF, et al. Toll-like receptors 7/8: a paradigm for the manipulation of immunologic reactions for immunotherapy[J].Viral Immunol,2023,36(9):564-578. doi:10.1089/vim.2023.0077pmid:37751284 |
| [31] | Satterthwaite AB. TLR7 signaling in lupus B cells: new insights into synergizing factors and downstream signals[J].Curr Rheumatol Rep,2021,23(11):80. doi:10.1007/s11926-021-01047-1pmid:34817709 |
| [32] | Yu B, Qi Y, Li R, et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells[J].Cell,2021,184(7):1790-1803. doi:10.1016/j.cell.2021.02.015pmid:33735607 |
| [33] | Sachinidis A, Lamprinou M, Dimitroulas T, et al. Targeting T-bet expressing B cells for therapeutic interventions in autoimmunity[J].Clin Exp Immunol,2024,217(2):159-166. doi:10.1093/cei/uxae036pmid:38647337 |
| [34] | Patel ZH, Lu X, Miller D, et al. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus[J].Hum Mol Genet,2018,27(13):2392-2404. doi:10.1093/hmg/ddy140pmid:29912393 |
| [35] | Liu S, Zhang W, Tian S, et al. B cell-intrinsic IFN-γ promotes excessive CD11c+age-associated B cell differentiation and compromised germinal center selection in lupus mice[J].Cell Immunol,2024, 405-406:104833. |
| [36] | Hagberg N, Joelsson M, Leonard D, et al. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE[J].Ann Rheum Dis,2018,77(7):1070-1077. doi:10.1136/annrheumdis-2017-212794pmid:29475858 |
| [37] | Song W, Sanchez GM, Mayer DP, et al. Cutting edge: IL-21 and tissue-specific signals instruct tbet+CD11c+B cell development following viral infection[J].J Immunol,2023,210(12):1861-1865. |
| [38] | Gao X, Shen Q, Roco JA, et al. Zeb2 drives the formation of CD11c+atypical B cells to sustain germinal centers that control persistent infection[J].Sci Immunol,2024,9(93):eadj4748. |
| [39] | Liu X, Li C, Wang Y, et al. ZEB2 drives the differentiation of age-associated B cell in autoimmune diseases[J].Sci Bull,2024,69(10):1362-1364. doi:10.1016/j.scib.2024.03.041pmid:38594098 |
| [40] | Wei X, Niu X. T follicular helper cells in autoimmune diseases[J].J Autoimmun,2023,134:102976. |
| [41] | Jin X, Chen J, Wu J, et al. Aberrant expansion of follicular helper T cell subsets in patients with systemic lupus erythematosus[J].Front Immunol,2022,13:928359. |
| [42] | Ramirez De Oleo I, Kim V, Atisha-Fregoso Y, et al. Phenotypic and functional characteristics of murine CD11c+B cells which is suppressed by metformin[J].Front Immunol,2023,14:1241531. |
| [43] | Song W, Antao OQ, Condiff E, et al. Development of Tbet-and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers[J].Immunity,2022,55(2):290-307. |
| [1] | CHEN Xue, SUN Mingfang, DAI Huanzi.A case of neuropsychiatric lupus successfully treated with sequential therapy of rituximab and belimumab therapy[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 316-318. |
| [2] | CEN Xing, ZHAO Chunmiao, BU Yujie, ZHAO Guifang, YANG Jinhua, CHEN Junwei.Investigating correlation between gut microbiota and peripheral lymphocyte subsets in patients with systemic lupus erythematosus[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 140-145. |
| [3] | YANG Yifan, ZHANG Guofang, XU Jian.Application of multimodal magnetic resonance in identification of early brain damage in systemic lupus erythematosus[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 372-378. |
| [4] | CHEN Jia, ZHAO Futao, SUN Jianfang.Role of dermatopathology in diagnosis of rheumatic diseases[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 367-371. |
| [5] | SU Chuanxin, ZHU Zhenhang, WANG Wang, LIANG Rongzhen, ZHENG Songguo, ZHAO Futao.Application of mesenchymal stem cells in systemic rheumatic diseases: current situation and prospects[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 422-426. |
| [6] | LIU Yanming, SUN Shuyu, LI Song, WU Jian.A case of systemic lupus erythematosus complicated with calcinosis cutis[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(06): 409-412. |
| [7] | WANG Yiyang, LÜ Liangjing.Potential biomarkers for prediction of the efficacy and safety of CAR T cell treatment in systemic lupus erythematosus[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 263-269. |
| [8] | ZHANG Xin, ZHAO Shengnan, FENG Xuebing.Current status and challenges in diagnosis and treatment of systemic lupus erythematosus in China[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 257-262. |
| [9] | GE Jianhua, GONG Wen, SHI Xinming, GONG Huiyun, MA Longxin, ZHOU Jinfeng, SHI Hui.Value of combining ELISA and CLIFT in detection of anti-dsDNA IgG antibody for diagnosis of systemic lupus erythematosis[J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 658-663. |
| [10] | .[J]. Journal of Diagnostics Concepts & Practice, 2015, 14(06): 545-548. |
| [11] | .[J]. Journal of Diagnostics Concepts & Practice, 2015, 14(06): 528-532. |
| [12] | .[J]. Journal of Diagnostics Concepts & Practice, 2015, 14(03): 229-234. |
| [13] | .[J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 246-250. |
| [14] | .[J]. Journal of Diagnostics Concepts & Practice, 2014, 13(03): 255-259. |
| [15] | .[J]. Journal of Diagnostics Concepts & Practice, 2012, 11(04): 397-400. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||