
Journal of Internal Medicine Concepts & Practice››2025,Vol. 20››Issue (02): 112-119.doi:10.16138/j.1673-6087.2025.02.03
• Expert forum •Previous ArticlesNext Articles
CAO Zhijun, LU Juntao
Received:2025-02-18Online:2025-04-28Published:2025-07-08CLC Number:
CAO Zhijun, LU Juntao. Pathogenesis and management principles of extraintestinal manifestations in inflammatory bowel disease[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 112-119.
Table 1
Clinical features of EIM
| 器官和系统 | EIM | 临床特征 | 与肠道表现的关系 |
|---|---|---|---|
| 肌肉骨骼 | 外周关节炎Ⅰ型 | 少关节炎(<5 个关节),累及大关节,常见于下肢,急性发作 | 平行于肠道表现 |
| 外周关节炎Ⅱ型 | 多关节炎(≥5 个关节),对称性,慢性炎症 | 独立进展 | |
| AxSpA | 慢性腰背痛、晨僵、骶髂关节炎、部分与HLA-B27相关 | 独立进展 | |
| 皮肤 | 结节性红斑 | 触痛性红色结节,多见于小腿前侧 | 平行于肠道表现 |
| 坏疽性脓皮病 | 坏死性皮肤溃疡、边缘隆起 | 独立进展 | |
| Sweet综合征 | 发热、白细胞增多、痛性红斑样皮损 | 平行于肠道表现 | |
| 眼部 | 葡萄膜炎 | 眼痛、畏光、视力下降,前葡萄膜炎更常见 | 平行于肠道表现 |
| 巩膜外层炎 | 自限性,结膜充血、灼热感、瘙痒及轻度不适和疼痛 | 平行于肠道表现 | |
| 巩膜炎 | 眼部充血、疼痛,可能引起视功能损害 | 独立进展 | |
| 肝胆 | PSC | 胆汁淤积、黄疸、肝纤维化,可进展至胆管癌 | 独立进展 |
| AIH | 转氨酶升高、IgG增高,部分患者对免疫抑制治疗敏感 | 不确定 |
Table 2
Treatment plans for different extraintestinal manifestations
| EIM分类 | 传统治疗 | 生物制剂 |
|---|---|---|
| 与IBD活动平行的EIM | ||
| 外周关节炎1) | NSAID(选择性COX-2抑制剂);柳氮磺吡啶、甲氨蝶呤 | TNF-α抑制剂;其他生物制剂疗效尚存争议 |
| 结节性红斑 | 支持治疗;短期口服糖皮质激素[0.5~1.0 mg/(kg·d),1~2 周] | TNF-α抑制剂(基于IBD活动) |
| Sweet综合征 | 控制IBD原发疾病;系统性糖皮质激素[0.5~1.0 mg/(kg·d)] | 有报道使用TNF-α抑制剂(IFX) |
| 葡萄膜炎 | 前葡萄膜炎:局部糖皮质激素滴眼液;中间型、后葡萄膜炎、全葡萄膜炎:玻璃体内注射或全身糖皮质激素+免疫抑制剂(二线) | 严重或伴IBD活动:TNF-α抑制剂(三线) |
| 巩膜外层炎 | 人工泪液、冷敷;难治性病例可使用局部糖皮质激素滴眼液 | 无明确生物制剂适应证 |
| 独立进展的EIM | ||
| AxSpA | NSAID;柳氮磺吡啶、甲氨蝶呤无效 | TNF-α抑制剂;JAK抑制剂2) |
| 巩膜炎 | 轻症:选择性COX-2抑制剂、局部糖皮质激素滴眼液(短期);重症:系统性糖皮质激素1.0 ~1.5 mg/(kg·d),逐步减量+免疫抑制剂(甲氨蝶呤、硫唑嘌呤、吗替麦考酚酯、钙调磷酸酶抑制剂) | TNF-α抑制剂(难治性病例) |
| 坏疽性脓皮病 | 轻度:局部糖皮质激素、钙调磷酸酶抑制剂; 重度:糖皮质激素[0.5~2.0 mg/(kg·d),口服或静脉注射]、环孢素 |
TNF-α 抑制剂(IFX) |
| PSC | UDCA;肝移植(终末期) | TNF-α抑制剂、VDZ对于改善肝脏生化指标无效 |
| AIH3) | 诱导缓解:泼尼松龙;维持治疗:硫唑嘌呤(一线),吗替麦考酚酯、 6-巯基嘌呤(二线) |
难治性:TNF-α 抑制剂(IFX) |
| [1] | Vavricka SR, Schoepfer A, Scharl M, et al. Extraintestinal manifestations of inflammatory bowel disease[J].Inflamm Bowel Dis,2015,21(8): 1982-1992. doi:10.1097/MIB.0000000000000392pmid:26154136 |
| [2] | Rogler G, Singh A, Kavanaugh A, et al. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management[J].Gastroenterology,2021,161(4): 1118-1132. doi:10.1053/j.gastro.2021.07.042pmid:34358489 |
| [3] | Guillo L, D’Amico F, Serrero M, et al. Assessment of extraintestinal manifestations in inflammatory bowel diseases: a systematic review and a proposed guide for clinical trials[J].United European Gastroenterol J,2020,8(8): 1013-1030. |
| [4] | Gordon H, Burisch J, Ellul P, et al. ECCO guidelines on extraintestinal manifestations in inflammatory bowel disease[J].J Crohns Colitis,2024,18(1): 1-37. |
| [5] | Kilic Y, Kamal S, Jaffar F, et al. Prevalence of extraintestinal manifestations in inflammatory bowel disease: a systematic review and meta-analysis[J].Inflamm Bowel Dis,2024,30(2): 230-239. |
| [6] | Boneschansker L, Burke KE. Beyond the gut: the epidemiology of extraintestinal manifestations in inflammatory bowel disease[J].Clin Transl Gastroenterol,2023,14(12): e00618. |
| [7] | He R, Zhao S, Cui M, et al. Cutaneous manifestations of inflammatory bowel disease: basic characteristics, therapy, and potential pathophysiological associations[J].Front Immunol,2023,14: 1234535. |
| [8] | Maverakis E, Marzano AV, Le ST, et al. Pyoderma gangrenosum[J].Nat Rev Dis Primers,2020,6(1): 81. doi:10.1038/s41572-020-0213-xpmid:33033263 |
| [9] | Sleiman J, Hitawala AA, Cohen B, et al. Systematic review: Sweet syndrome associated with inflammatory bowel disease[J].J Crohns Colitis,2021,15(12): 1864-1876. |
| [10] | Richardson H, Yoon G, Moussa G, et al. Ocular manifestations of IBD: pathophysiology, epidemiology, and iatrogenic associations of emerging treatment strategies[J].Biomedicines,2024,12(12): 2856. |
| [11] | Migliorisi G, Vella G, Dal Buono A, et al. Ophthalmological manifestations in inflammatory bowel diseases: keep an eye on it[J].Cells,2024,13(2): 142. |
| [12] | Wang MH, Friton JJ, Rebert N, et al. Novel genetic risk variants and clinical predictors associated with primary sclerosing cholangitis in patients with ulcerative colitis[J].Clin Transl Gastroenterol,2023,14(9): e00615. |
| [13] | Beheshti Maal A, Shahrbaf MA, Sadri B, et al. Prevalence of hepatobiliary manifestations in inflammatory bowel disease: a GRADE assessed systematic review and meta-analysis of more than 1.7 million patients[J].J Crohns Colitis,2024,18(3): 360-374. |
| [14] | van Sommeren S, Janse M, Karjalainen J, et al. Extraintestinal manifestations and complications in inflammatory bowel disease: from shared genetics to shared biological pathways[J].Inflamm Bowel Dis,2014,20(6): 987-994. doi:10.1097/MIB.0000000000000032pmid:24739630 |
| [15] | Khrom M, Long M, Dube S, et al. Comprehensive association analyses of extraintestinal manifestations in inflammatory bowel disease[J].Gastroenterology,2024,167(2): 315-332. doi:10.1053/j.gastro.2024.02.026pmid:38490347 |
| [16] | Taurog JD, Richardson JA, Croft JT, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats[J].J Exp Med,1994,180(6): 2359-2364. doi:10.1084/jem.180.6.2359pmid:7964509 |
| [17] | Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site[J].Immunity,2015,43(2): 343-353. doi:10.1016/j.immuni.2015.07.014pmid:26287682 |
| [18] | Tie Y, Huang Y, Chen R, et al. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets[J].Gut Microbes,2023,15(2): 2265028. |
| [19] | Hedin CRH, Vavricka SR, Stagg AJ, et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy[J].J Crohns Colitis,2019,13(5): 541-554. |
| [20] | McCarthy DA, Rampton DS, Liu YC. Peripheral blood neutrophils in inflammatory bowel disease: morphological evidence ofin vivoactivation in active disease[J].Clin Exp Immunol,1991,86(3): 489-493. pmid:1684141 |
| [21] | Nikolaus S, Bauditz J, Gionchetti P, et al. Increased secretion of pro-inflammatory cytokines by circulating polymorphonuclear neutrophils and regulation by interleukin 10 during intestinal inflammation[J].Gut,1998,42(4): 470-476. pmid:9616306 |
| [22] | Smith AM, Rahman FZ, Hayee B, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease[J].J Exp Med,2009,206(8): 1883-1897. |
| [23] | Sanders TJ, McCarthy NE, Giles EM, et al. Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn’s disease[J].Gastroenterology,2014,146(5): 1278-1288. |
| [24] | Yan JB, Luo MM, Chen ZY, et al. The function and role of the Th17/Treg cell balance in inflammatory bowel disease[J].J Immunol Res,2020,2020: 8813558. |
| [25] | Mortier C, Gracey E, Coudenys J, et al. RORγt inhibition ameliorates IL-23 driven experimental psoriatic arthritis by predominantly modulating γδ-T cells[J].Rheumatology,2023,62(10): 3169-3178. |
| [26] | Wang Y, Yang C, Hou Y, et al. Dimethyl itaconate inhibits antigen-specific Th17 cell responses and autoimmune inflammation via modulating NRF2/STAT3 signaling[J].FASEB J,2024,38(5): e23607. |
| [27] | Graham JJ, Mukherjee S, Yuksel M, et al. Aberrant hepatic trafficking of gut-derived T cells is not specific to primary sclerosing cholangitis[J].Hepatology,2022,75(3): 518-530. |
| [28] | Chen YH, Eskandarpour M, Zhang X, et al. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis[J].J Neuroinflammation,2021,18(1): 49. |
| [29] | Qaiyum Z, Gracey E, Yao Y, et al. Integrin and transcriptomic profiles identify a distinctive synovial CD8+T cell subpopulation in spondyloarthritis[J].Ann Rheum Dis,2019,78(11): 1566-1575. doi:10.1136/annrheumdis-2019-215349pmid:31471299 |
| [30] | Nardone OM, Calabrese G, La Mantia A, et al. Reducing diagnostic delays of extraintestinal manifestations in inflammatory bowel disease: a comparative study of a multidisciplinary outpatient clinic versus conventional referral specialists[J].Therap Adv Gastroenterol,2025,18: 17562848251323529. |
| [31] | Sayers S, Lam D, Shah Q, et al. Impact on patient outcomes of spondyloarthritis-inflammatory bowel disease multi-disciplinary meetings[J].Rheumatology (Oxford),2025,64(2): 815-820. |
| [32] | Krauss O, Holzer K, Schuler A, et al. Challenges and approaches to make multidisciplinary team meetings interoperable[J].Stud Health Technol Inform,2017,236: 63-69. |
| [33] | Khumalo AC, Kane BT. Perspectives on record-keeping practices in MDT meetings and meeting record utility[J].Int J Med Inform,2022,161: 104711. |
| [34] | Guillo L, Savoye G, Amiot A, et al. Prevalence of and factors associated with extraintestinal manifestations and their remission in inflammatory bowel disease: the EXTRA-intestinal manifestation prospective study from the Groupe d’Etude Thérapeutique des Affections Inflammatoires du Tube Digestif[J].Clin Transl Gastroenterol,2023,14(12): e00607. |
| [35] | Greuter T, Rieder F, Kucharzik T, et al. Emerging treatment options for extraintestinal manifestations in IBD[J].Gut,2021,70(4): 796-802. doi:10.1136/gutjnl-2020-322129pmid:32847845 |
| [36] | De Galan C, Truyens M, Peeters H, et al. The impact of vedolizumab and ustekinumab on articular extra-intestinal manifestations in inflammatory bowel disease patients: a real-life multicentre cohort study[J].J Crohns Colitis,2022,16(11): 1676-1686. doi:10.1093/ecco-jcc/jjac058pmid:35442433 |
| [37] | Tímár ÁE, Párniczky A, Budai KA, et al. Beyond the gut: a systematic review and meta-analysis of advanced therapies for inflammatory bowel disease-associated extraintestinal manifestations[J].J Crohns Colitis,2024,18(6): 851-863. doi:10.1093/ecco-jcc/jjae002pmid:38189533 |
| [38] | Narula N, Aruljothy A, Wong ECL, et al. The impact of ustekinumab on extraintestinal manifestations of Crohn’s disease: a post hoc analysis of the UNITI studies[J].United European Gastroenterol J,2021,9(5): 581-589. |
| [39] | Jansen FM, Vavricka SR, den Broeder AA, et al. Clinical management of the most common extra-intestinal manifestations in patients with inflammatory bowel disease focused on the joints, skin and eyes[J].United European Gastroenterol J,2020,8(9): 1031-1044. |
| [40] | Greuter T, Navarini A, Vavricka SR. Skin manifestations of inflammatory bowel disease[J].Clin Rev Allergy Immunol,2017,53(3): 413-427. |
| [41] | Licona Vera E, Betancur Vasquez C, Peinado Acevedo JS, et al. Ocular manifestations of inflammatory bowel disease[J].Cureus,2023,15(6): e40299. |
| [42] | Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update[J].Nat Rev Rheumatol,2022,18(4): 205-216. doi:10.1038/s41584-022-00761-zpmid:35273385 |
| [43] | Webers C, Ortolan A, Sepriano A, et al. Efficacy and safety of biological DMARDs: a systematic literature review informing the 2022 update of the ASAS-EULAR recommendations for the management of axial spondyloarthritis[J].Ann Rheum Dis,2023,82(1): 130-141. |
| [44] | Abdel-Aty A, Gupta A, Del Priore L, et al. Management of noninfectious scleritis[J].Ther Adv Ophthalmol,2022,14: 25158414211070879. |
| [45] | Maronese CA, Pimentel MA, Li MM, et al. Pyoderma gangrenosum: an updated literature review on established and emerging pharmacological treatments[J].Am J Clin Dermatol,2022,23(5): 615-634. doi:10.1007/s40257-022-00699-8pmid:35606650 |
| [46] | Sadeghi S, Goodarzi A. Various application of tofacitinib and ruxolitinib (Janus kinase inhibitors) in dermatology and rheumatology: a review of current evidence and future perspective[J].Dermatol Pract Concept,2022,12(4): e2022178. |
| [47] | Assis DN, Bowlus CL. Recent advances in the management of primary sclerosing cholangitis[J].Clin Gastroenterol Hepatol,2023,21(8): 2065-2075. |
| [48] | Shah A, Jones MP, Callaghan G, et al. Efficacy and safety of biologics in primary sclerosing cholangitis with inflammatory bowel disease: a systematic review and meta-analysis[J].Hepatol Commun,2024,8(1): e0347. |
| [49] | European Association for the Study of the Liver. EASL clinical practice guidelines: autoimmune hepatitis[J].J Hepatol,2015,63(3): 971-1004. |
| [50] | Hertz S, Anderson JM, Nielsen HL, et al. Fecal microbiota is associated with extraintestinal manifestations in inflammatory bowel disease[J].Ann Med,2024,56(1): 2338244. |
| [51] | Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease[J].J Allergy Clin Immunol,2020,145(1): 16-27. doi:S0091-6749(19)31486-1pmid:31910984 |
| [52] | Fan Z, Ross RP, Stanton C, et al. Lactobacillus casei CCFM1074 alleviates collagen-induced arthritis in rats via balancing Treg/Th17 and modulating the metabolites and gut microbiota[J].Front Immunol,2021,12: 680073. |
| [53] | Dusek O, Fajstova A, Klimova A, et al. Severity of experimental autoimmune uveitis is reduced by pretreatment with live probioticEscherichia coliNissle 1917[J].Cells,2020,10(1): 23. |
| [54] | Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J].Nat Rev Gastroenterol Hepatol,2017,14(8): 491-502. doi:10.1038/nrgastro.2017.75pmid:28611480 |
| [55] | Hoentjen F, Welling GW, Harmsen HJM, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation[J].Inflamm Bowel Dis,2005,11(11): 977-985. pmid:16239843 |
| [56] | Allegretti JR, Kassam Z, Carrellas M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial[J].Am J Gastroenterol,2019,114(7): 1071-1079. doi:10.14309/ajg.0000000000000115pmid:30730351 |
| [57] | Al-Shakhshir S, Quraishi MN, Mullish B, et al. FAecal micRobiota transplantation in primary sclerosinG chOlangitis (FARGO): study protocol for a randomised, multicentre, phase Ⅱa, placebo-controlled trial[J].BMJ Open,2025,15(1): e095392. |
| [58] | Eiro N, Fraile M, González-Jubete A, et al. Mesenchymal (stem) stromal cells based as new therapeutic alternative in inflammatory bowel disease: basic mechanisms, experimental and clinical evidence, and challenges[J].Int J Mol Sci,2022,23(16): 8905. |
| [59] | Wang P, Li Y, Huang L, et al. Effects and safety of allogenic mesenchymal stem cell intravenous infusion in active ankylosing spondylitis patients who failed NSAIDs: a 20-week clinical trial[J].Cell Transplant,2014,23(10): 1293-1303. doi:10.3727/096368913X667727pmid:23711393 |
| [60] | Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: a focus on inflammatory bowel disease[J].Clin Transl Med,2024,14(11): e70075. |
| [1] | GE Wensong.Diagnosis and management strategy of lung injury related to inflammatory bowel disease[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 107-111. |
| [2] | GU Yubei, HONG Yu.Medicine de-escalation strategies in inflammatory bowel disease for remission maintenance[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 101-106. |
| [3] | ZHENG Yamin, GU Liguo, XU Chen.Stage on development of pathophysiology of gallbladder stone and personalized diagnosis and treatment[J]. Journal of Surgery Concepts & Practice, 2023, 28(02): 94-99. |
| [4] | CHEN Ying, ZHANG Chenli, YAO Weiyan.Efficacy and safety of selective granulocyte and monocyte adsorptive apheresis in treatment of moderate to severe inflammatory bowel disease[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 441-446. |
| [5] | LIU Ping, XIAO Yuan, WANG Xinqiong, LU Tingwei, ZHAO Xuesong, YANG Yuanyan.Crohn′s disease in a child with Wiskott-Aldrich syndrome: a case report and literature review[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 349-354. |
| [6] | WANG Tingting, ZHENG Naisheng, YUAN Xiangliang, SHEN Lisong.Analysis of structural characteristics of gut microbiome in colitis mice based on 16S rRNA high-throughput sequencing[J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 263-270. |
| [7] | .[J]. Journal of Internal Medicine Concepts & Practice, 2016, 11(05): 296-300. |
| [8] | .[J]. Journal of Internal Medicine Concepts & Practice, 2016, 11(02): 84-87. |
| [9] | .[J]. Journal of Internal Medicine Concepts & Practice, 2015, 10(05): 381-383. |
| [10] | .[J]. Journal of Diagnostics Concepts & Practice, 2015, 14(02): 131-135. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||