
Journal of Internal Medicine Concepts & Practice››2023,Vol. 18››Issue (02): 92-98.doi:10.16138/j.1673-6087.2023.02.006
• Research report •Previous ArticlesNext Articles
XIAO Jianwei1, CAI Xu1, HUANG Xinmin1, HONG Yiwei1, WANG Rongsheng2(
)
Received:2022-10-20Online:2023-04-25Published:2023-05-15CLC Number:
XIAO Jianwei, CAI Xu, HUANG Xinmin, HONG Yiwei, WANG Rongsheng. Expression ofLINC01465in gouty arthritis and its clinical significances[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 92-98.
| [1] | Kuo CF, Grainge MJ, Zhang W, et al. Global epidemiology of gout: prevalence, incidence and risk factors[J]. Nat Rev Rheumatol, 2015, 11(11): 649-662. doi:10.1038/nrrheum.2015.91 |
| [2] | Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors[J]. Nat Rev Rheumatol, 2020, 16(7): 380-390. doi:10.1038/s41584-020-0441-1pmid:32541923 |
| [3] | Major TJ, Dalbeth N, Stahl EA, et al. An update on the genetics of hyperuricaemia and gout[J]. Nat Rev Rheumatol, 2018, 14(6): 341-353. doi:10.1038/s41584-018-0004-xpmid:29740155 |
| [4] | Jeong JH, Hong S, Kwon OC, et al. CD14+cells with the phenotype of infiltrated monocytes consist of distinct populations characterized by anti-inflammatory as well as pro-inflammatory activity in gouty arthritis[J]. Front Immunol, 2017, 8:1260. doi:10.3389/fimmu.2017.01260pmid:29056937 |
| [5] | Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118. doi:10.1038/s41580-020-00315-9 |
| [6] | Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression[J]. Nat Rev Mol Cell Biol, 2016, 17(12): 756-770. doi:10.1038/nrm.2016.126 |
| [7] | Fang L, Xu X, Lu Y, et al. Long noncoding RNA SNHG8 accelerates acute gouty arthritis development by upregulating AP3D1 in mice[J]. Bioengineered, 2021, 12(2): 9803-9815. doi:10.1080/21655979.2021.1995579pmid:34874227 |
| [8] | Liu YF, Xing GL, Chen Z, et al. Long non-coding RNA HOTAIR knockdown alleviates gouty arthritis through miR-20b upregulation and NLRP3 downregulation[J]. Cell Cycle, 2021, 20(3): 332-344. doi:10.1080/15384101.2021.1874696URL |
| [9] | Zhong X, Peng Y, Liao H, et al. Aberrant expression of long non-coding RNAs in peripheral blood mononuclear cells isolated from patients with gouty arthritis[J]. Exp Ther Med, 2019, 18(3): 1967-1976. doi:10.3892/etm.2019.7816pmid:31452697 |
| [10] | Xiao J, Wang R, Cai X, et al. Coupling of co-expression network analysis and machine learning validation unearthed potential key genes involved in rheumatoid arthritis[J]. Front Genet, 2021, 12: 604714. doi:10.3389/fgene.2021.604714URL |
| [11] | Adamichou C, Genitsaridi I, Nikolopoulos D, et al. Lupus or not? SLE risk probability index(SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus[J]. Ann Rheum Dis, 2021, 80(6): 758-766. doi:10.1136/annrheumdis-2020-219069URL |
| [12] | Noss MR, Saguil A. Gout: diagnosis and management[J]. Am Fam Physician, 2017, 96(10):668-670. pmid:29431386 |
| [13] | Lodde V, Murgia G, Simula ER, et al. Long noncoding RNAs and circular RNAs in autoimmune diseases[J]. Biomolecules, 2020, 10(7): 1044. doi:10.3390/biom10071044URL |
| [14] | Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies[J]. Chem Sci, 2020, 11(23): 5855-5865. doi:10.1039/d0sc01676dpmid:32953006 |
| [15] | Shi Y, Mucsi AD, Ng G. Monosodium urate crystals in inflammation and immunity[J]. Immunol Rev, 2010, 233(1): 203-217. doi:10.1111/j.0105-2896.2009.00851.xpmid:20193001 |
| [16] | Malumbres M, Barbacid M. RAS oncogenes: the first 30 years[J]. Nat Rev Cancer, 2003, 3(6): 459-465. doi:10.1038/nrc1097pmid:12778136 |
| [17] | Roskoski R Jr. RAF protein-serine/threonine kinases: structure and regulation[J]. Biochem Biophys Res Commun, 2010, 399(3): 313-317. doi:10.1016/j.bbrc.2010.07.092URL |
| [18] | Krygowska AA, Castellano E. PI3K: a crucial piece in the RAS signaling puzzle[J]. Cold Spring Harbor Perspect Med, 2018, 8(6): a031450. doi:10.1101/cshperspect.a031450URL |
| [19] | Pacold ME, Suire S, Perisic O, et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma[J]. Cell, 2000, 103(6): 931-943. doi:10.1016/s0092-8674(00)00196-3pmid:11136978 |
| [20] | Cavalcanti NG, Marques CD, Lins E Lins TU, et al. Cytokine profile in gout: inflammation driven by IL-6 and IL-18?[J]. Immunol Invest, 2016, 45(5): 383-395. doi:10.3109/08820139.2016.1153651pmid:27219123 |
| [21] | Charles P, Terrier B, Perrodeau é, et al. Comparison of individually tailoredversusfixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission[J]. Ann Rheum Dis, 2018, 77(8): 1143-1149. doi:10.1136/annrheumdis-2017-212878pmid:29695500 |
| [22] | Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses[J]. Nat Rev Immunol, 2009, 9(9): 609-617. doi:10.1038/nri2607pmid:19704417 |
| [23] | Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?[J]. Trends Immunol, 2017, 38(6): 395-406. doi:S1471-4906(17)30042-Xpmid:28396078 |
| [24] | Mian Wu, Zhang M, Ma Y, et al. Chaetocin attenuates gout in mice through inhibiting HIF-1α and NLRP3 inflammasome-dependent IL-1β secretion in macrophages[J]. Arch Biochem Biophys, 2019, 670: 94-103. doi:S0003-9861(19)30038-4pmid:31255694 |
| [25] | Vallée A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical Wnt/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis[J]. Front Immunol, 2018, 9: 745. doi:10.3389/fimmu.2018.00745pmid:29706964 |
| [26] | Lopes F, Coelho FM, Costa VV, et al. Resolution of neutrophilic inflammation by H2O2in antigen-induced arthritis[J]. Arthritis Rheum, 2011, 63(9): 2651-2660. doi:10.1002/art.30448URL |
| [27] | Galvão I, Queiroz-Junior CM, et al. The inhibition of phosphoinositide-3 kinases induce resolution of inflammation in a Gout model[J]. Front Pharmacol, 2019, 9: 1505. doi:10.3389/fphar.2018.01505URL |
| [28] | Stewart DJ. Wnt signaling pathway in non-small cell lung cancer[J]. J Natl Cancer Inst, 2014, 106(1): djt356. doi:10.1093/jnci/djt356URL |
| [29] | Ke B, Shen XD, Kamo N, et al. β-catenin regulates innate and adaptive immunity in mouse liver ischemia-reperfusion injury[J]. Hepatology, 2013, 57(3): 1203-1214. doi:10.1002/hep.26100pmid:23081841 |
| [30] | Xiao Y, Peng H, Hong C, et al. PDGF promotes the warburg effect in pulmonary arterial smooth muscle cellsviaactivation of the PI3K/AKT/mTOR/HIF-1α signaling pathway[J]. Cell Physiol Biochem, 2017, 42(4): 1603-1613. doi:10.1159/000479401URL |
| [31] | Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics[J]. Cancer Res, 2000, 60(6): 1541-1545. pmid:10749120 |
| [32] | Yang XM, Wang YS, Zhang J, et al. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1α and VEGF in laser-induced Rat choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2009, 50(4): 1873-1879. doi:10.1167/iovs.08-2591URL |
| [33] | Karar J, Cerniglia GJ, Lindsten T, et al. Dual PI3K/mTOR inhibitor NVP-BEZ235 suppresses hypoxia-inducible factor (HIF)-1α expression by blocking protein translation and increases cell death under hypoxia[J]. Cancer Biol Ther, 2012, 13(11): 1102-1111. doi:10.4161/cbt.21144pmid:22895065 |
| [34] | Semenza GL. HIF-1: upstream and downstream of cancer metabolism[J]. Curr Opin Genet Dev, 2010, 20(1): 51-56. doi:10.1016/j.gde.2009.10.009pmid:19942427 |
| [1] | ZHAO Jingjing, WU Di. Research progress of signal pathways in soft palate development[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(1): 75-. |
| [2] | GAN Ezhong, LIU Yan, WANG Hairong, WANG Chengguang.Research on Comprehensive Tradeoff of Supportability Based on Machine Learning Performance Measurement Theory[J]. Air & Space Defense, 2023, 6(1): 38-44. |
| [3] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏).Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
| [4] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军).Machine Learning-Based Approach to Liner Shipping Schedule Design[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
| [5] | WANG Zhiyan, SONG Tao. Application of artificial intelligence in Cranial and Maxillofacial Surgery[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2022, 18(2): 160-. |
| [6] | JIA Dao, CHEN Lei, ZHU Zhipeng, YU Yao, CHI Dejian.Application of Machine Learning in Fuze- Warhead System Design[J]. Air & Space Defense, 2022, 5(2): 27-31. |
| [7] | WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an.Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348. |
| [8] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹).Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
| [9] | HE Xin, CHEN Hui, FENG Weiwei.Research progress on the application of machine learning in assisted ultrasound diagnosis of adnexal masses[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 541-546. |
| [10] | ZHOU Yi, QIN Kangping, SUN Jinwen, FAN Dongqi, ZHENG Yiming.Real-Time Risk Evaluation Method of Power System Equipment andN-mFault Contingency Plan Generation Under Typhoon Meteorological Environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 22-30. |
| [11] | HE Xiawei, CAI Yunze, YAN Lingling.A Combined Residual Detection Method of Reaction Wheel for Fault Detection[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 716-728. |
| [12] | ZHU Song, QIAN Xiaochao, LU Yingbo, LIU Fei.An XGBoost-Based Effectiveness Prediction Method of Equipment System-of-Systems[J]. Air & Space Defense, 2021, 4(2): 1-. |
| [13] | BAO Qinglin, CHAI Huaqi, ZHAO Songzheng, WANG Jilin.Model of Technology Opportunity Mining Using Machine Learning Algorithm and Its Application[J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 705-717. |
| [14] | KANG Jianqiang, DONG Yangyang, YANG Ling, SONG Zhen, FAN Jiaying.Effect ofHaemophilusinfluenzae colonizing lower respiratory tract on airway inflammation and its signaling pathway in asthmatic mice[J]. Journal of Diagnostics Concepts & Practice, 2020, 19(1): 44-49. |
| [15] | XU Yuan,GUO Yao,YUAN Siming,WANG Min,CHEN Haini,SHEN Weimin.The Effect of PPAR-Gamma Signaling Pathway in the Adipogenic Differentiation of Hemangioma Derived Mesenchymal Stem Cells in Vitro[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2019, 15(1): 1-9. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||