
Journal of Diagnostics Concepts & Practice››2024,Vol. 23››Issue (02): 139-145.doi:10.16150/j.1671-2870.2024.02.007
• Original articles •Previous ArticlesNext Articles
QIAN Jiale1, FAN Jing1, ZHU Hong1, WANG Luotong2, KONG Deyan1(
)
Received:2024-01-17Online:2024-04-25Published:2024-07-04Contact:KONG Deyan E-mail:kdy04163@rjh.com.cnTable 1
Scanning parameters
| Parameters | TNC(n=90) | VP(n=90) | DP(n=90) |
|---|---|---|---|
| Tube voltage (kV) | 120 | 80/140 | 80/140 |
| Tube current mode | Smart mA | GSI Assist | GSI Assist |
| Collimation (mm) | 80 | 80 | 80 |
| Scanning mode | Helical | Helical | Helical |
| Matrix | 512×512 | 512×512 | 512×512 |
| Thickness (mm) | 1.25 | 1.25 | 1.25 |
| Reconstruction | AR70 | VNC+DM/DH | VNC+DM/DH |
| CTDIvol(mGy) | 9.05±2.63 | 8.99±2.75 | 8.99±2.75 |
Table 2
Comparison of objective parameters of virtual non-contrast and real non-contrast images of different phases
| Indice | TNC-AR70 | VP-VNC-DM | VP-VNC-DH | DP-VNC-DM | DP-VNC-DH | F | P |
|---|---|---|---|---|---|---|---|
| CT(HU) | |||||||
| Liver | 57.09±7.79 | 58.06±6.33 | 58.14±6.30 | 59.12±7.02 | 59.26±6.96 | 1.481 | 0.207 |
| Spleen | 50.81±3.17 | 50.31±3.93 | 50.56±4.64 | 51.25±3.07 | 51.32±3.01 | 1.300 | 0.269 |
| Kidney | 34.19±4.41d,e | 36.15±7.20 | 36.33±7.09 | 38.32±4.62a | 37.93±3.84a | 7.699 | <0.001 |
| Fat | -108.95±3.67d,e | -107.47±5.17 | -107.65±4.96d,e | -105.36±5.09a,c | -105.36±5.02a,c | 9.496 | <0.001 |
| SD(HU) | |||||||
| Liver | 11.31±1.58b,c,d,e | 8.83±0.78a,c,e | 6.89±0.65a,b,d,e | 8.45±0.95a,c,e | 6.33±0.68a,b,c,d | 349.022 | <0.001 |
| Spleen | 10.20±1.65b,c,d,e | 8.98±3.04a,c,e | 7.17±3.18a,b,d,e | 8.08±0.81a,c,e | 6.00±0.58a,b,c,d | 50.902 | <0.001 |
| Kidney | 9.90±2.50b,c,d,e | 10.10±2.25a,c,d,e | 8.61±2.20a,b,e | 8.10±1.43a,b,e | 6.38±1.33a,b,c,d | 51.360 | <0.001 |
| Fat | 7.77±1.95b,d | 9.31±4.56a,c,e | 7.04±4.66b,d | 8.59±1.53a,c,e | 6.69±4.56b,d | 7.566 | <0.001 |
| SNR | |||||||
| Liver | 5.16±1.09b,c,d,e | 6.64±1.03a,c,d,e | 8.53±1.35a,b,d,e | 7.10±1.26a,b,c,e | 9.49±1.64a,b,c,d | 153.403 | <0.001 |
| Spleen | 5.11±0.89b,c,d,e | 5.82±0.90a,c,d,e | 7.42±1.22a,b,d,e | 6.40±0.67a,b,c,e | 8.62±0.88a,b,c,d | 197.779 | <0.001 |
| Kidney | 3.70±1.14c,d,e | 3.76±1.13c,d,e | 4.50±1.49a,b,e | 4.88±1.08a,b,e | 6.19±1.40a,b,c,d | 58.707 | <0.001 |
| CNR | |||||||
| Liver | 23.19±6.53b,d | 18.89±5.36a,c,e | 25.88±7.97b,d | 19.17±5.65a,c,e | 26.07±7.78b,d | 24.087 | <0.001 |
| Spleen | 22.28±6.16b,d | 17.93±4.85a,c,e | 24.60±7.30b,d | 18.20±5.40a,c,e | 24.79±7.36b,d | 25.349 | <0.001 |
| Kidney | 19.90±5.45b,d | 16.29±4.53a,c,e | 22.32±6.74b,d | 16.63±5.09a,c,e | 22.58±6.78b,d | 24.307 | <0.001 |
Figure 3
CT images of the right lower ureter bladder entrance stone of a 59-year-old male patient A: the true non-contrast CT image (TNC-AR70 group); B: the enhanced CT images of venous phase (VP); C: the enhanced CT image of delay phase (DP); D: the VP virtual non-contrast CT image reconstructed with DLIR-M (VP-VNC-DM group); E: the VP virtual non-contrast CT image reconstructed with DLIR-H (VP-VNC-DH group); F: the DP virtual non-contrast CT images reconstructed with DLIR-M (DP-VNC-DM group); G: the DP virtual non-contrast CT image reconstructed with DLIR-H (DP-VNC-DH group).
Figure 4
CT images of the left renal hilus stone of an 88-year-old female patient A: the true non-contrast CT image (AR70 group); B: the enhanced CT images of venous phase (VP); C: the enhanced CT image of delay phase (DP); D: the VP virtual non-contrast CT image reconstructed with DLIR-M (VP-VNC-DM group); E: the VP virtual non-contrast CT image reconstructed with DLIR-H (VP-VNC-DH group); F: the DP virtual non-contrast CT images reconstructed with DLIR-M (DP-VNC-DM group); G: the DP virtual non-contrast CT image reconstructed with DLIR-H (DP-VNC-DH group).
| [1] | ZHANG X, CHEN J, YU N, et al. Reducing contrast medium dose with low photon energy images in renal dual-energy spectral CT angiography and adaptive statistical iterative reconstruction (ASIR)[J].Br J Radiol,2021,94(1120):20200974. |
| [2] | ZENG S E, DU M Y, YU Y, et al. Ultrasound, CT, and MR imaging for evaluation of cystic renal masses[J].J Ultrasound Med,2022,41(4):807-819. |
| [3] | GEYER L L, SCHOEPF U J, MEINEL F G, et al. State of the art: Iterative CT reconstruction techniques[J].Radio-logy,2015,276(2):339-357. |
| [4] | ALTHOFF C E, GÜNTHER R W, HAMM B, et al. Intra-arterial ultra low iodine CT angiography of renal transplant arteries[J].Cardiovasc Intervent Radiol,2014,37(4):1062-1067. doi:10.1007/s00270-014-0838-9pmid:24464257 |
| [5] | VIRARKAR M K, VULASALA S S R, GUPTA A V, et al. Virtual Non-contrast Imaging in The Abdomen and The Pelvis: An Overview[J].Semin Ultrasound CT MR,2022,43(4):293-310. doi:10.1053/j.sult.2022.03.004pmid:35738815 |
| [6] | CHENG Y, SUN J, LI J, et al. The added value of virtual unenhanced images obtained from dual-energy CT urography in the detection and measurement of urinary stone[J].Urology,2022,166:118-125. |
| [7] | MA G, HAN D, DANG S, et al. Replacing true unenhanced imaging in renal carcinoma with virtual unenhanced images in dual-energy spectral CT: a feasibility study[J].Clin Radiol,2021,76(1):81,e21-e27. |
| [8] | XIAO J M, HIPPE D S, ZECEVIC M, et al. Virtual unenhanced dual-energy ct images obtained with a multimaterial decomposition algorithm: diagnostic value for renal mass and urinary stone evaluation[J].Radiology,2021,298(3):611-619. doi:10.1148/radiol.2021192448pmid:33464180 |
| [9] | MEYER M, NELSON R C, VERNUCCIO F, et al. Virtual unenhanced images at dual-energy CT: influence on renal lesion characterization[J].Radiology,2019,291(2):381-390. doi:10.1148/radiol.2019181100pmid:30860450 |
| [10] | DELABIE A, BOUZERAR R, PICHOIS R, et al. Diagnostic performance and image quality of deep learning image reconstruction (DLIR) on unenhanced low-dose abdominal CT for urolithiasis[J].Acta Radiol,2022,63(9):1283-1292. |
| [11] | YOO Y J, CHOI I Y, YEOM S K, et al. Evaluation of abdominal ct obtained using a deep learning-based image reconstruction engine compared with CT using adaptive statistical iterative reconstruction[J].J Belg Soc Radiol,2022,106(1):15. doi:10.5334/jbsr.2638pmid:35480337 |
| [12] | PARK J, SHIN J, MIN I K, et al. Image quality and lesion detectability of lower-dose abdominopelvic CT obtained using deep learning image reconstruction[J].Korean J Radiol,2022,23(4):402-412. doi:10.3348/kjr.2021.0683pmid:35289146 |
| [13] | SEO J Y, JOO I, YOON J H, et al. Deep learning-based reconstruction of virtual monoenergetic images of kVp-switching dual energy CT for evaluation of hypervascular liver lesions: Comparison with standard reconstruction technique[J].Eur J Radiol,2022,154:110390. |
| [14] | ZHONG J, XIA Y, CHEN Y, et al. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study[J].Eur Radiol,2023,33(2):812-824. |
| [1] | ZHANG Zhenlin, YUE Hua, LI Mei, XIA Weibo.Interpretation of guidelines for the diagnosis and treatment of primary osteoporosis (2022 version) in China: essential introduction[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(03): 230-233. |
| [2] | ZHU Siqi, WU Mengxiong, QIN Le, DONG Haipeng.Feasibility of dual-energy CT in evaluation of marrow edema of gouty arthritis[J]. Journal of Diagnostics Concepts & Practice, 2019, 18(03): 340-343. |
| [3] | GU Shengjia, CAO Qiqi, YAN Fuhua, YANG Wenjie.Quantitative assessment of therapy response of non-small cell lung cancer with dual-energy CT[J]. Journal of Diagnostics Concepts & Practice, 2018, 17(05): 526-532. |
| [4] | ZHANG Yang, ZHANG Huan, YAN Jing, GAO Xiaoyuan, TAN Jingwen, WU Xinyang, YAN Fuhua.Iodine value in dual source dual energy CT for evaluating the efficacy of neoadjuvant chemotherapy on advanced gastric adenocarcinoma[J]. Journal of Diagnostics Concepts & Practice, 2018, 17(02): 191-196. |
| [5] | .[J]. Journal of Diagnostics Concepts & Practice, 2013, 12(02): 216-220. |
| [6] | .[J]. Journal of Diagnostics Concepts & Practice, 2013, 12(01): 65-69. |
| [7] | .[J]. Journal of Diagnostics Concepts & Practice, 2003, 2(03): 44-46. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||