
诊断学理论与实践››2025,Vol. 24››Issue (02): 194-203.doi:10.16150/j.1671-2870.2025.02.011
覃雨1, 李程2, 华晴1, 张慧婷1, 贾宛儒1, 董屹婕1, 周建桥1, 夏蜀珺1(
)
收稿日期:2025-01-05接受日期:2025-03-10出版日期:2025-04-25发布日期:2025-07-11通讯作者:夏蜀珺 E-mail:xiashu_jun@126.com基金资助:
QIN Yu1, LI Cheng2, HUA Qing1, ZHANG Huiting1, JIA Wanru1, DONG Yijie1, ZHOU Jianqiao1, XIA Shujun1(
)
Received:2025-01-05Accepted:2025-03-10Published:2025-04-25Online:2025-07-11摘要:
目的:探讨超声黏弹性成像技术在乳腺肿瘤良恶性鉴别中的应用价值。方法:连续纳入2023年2月至2023年8月期间,开云网页登录 医学院附属瑞金医院收治的经手术病理证实为乳腺肿瘤的717例患者,其中471例为恶性,246例为良性。所有患者均在治疗前进行乳腺超声检查,包括灰阶超声、超声应变弹性成像、超声剪切波弹性成像、超声黏性成像。超声黏弹性成像技术包括测量肿瘤及其周围组织的黏性系数、频散系数和剪切波弹性模量、应变比等4组参数,以4组参数中的较佳预测指标,分别构建多种预测模型,包括黏性系数单变量模型、频散系数单变量模型、黏性组合模型(Shell/T-Vmean+Shell/T-Dmean)、剪切波单变量模型、应变单变量模型、乳腺影像报告和数据系统(Breast Imaging Reporting and Data System, BI-RADS)、BI-RADS联合黏性组合模型,评估每种模型在乳腺肿瘤良恶性鉴别中的效能。结果:超声黏弹性成像的黏性系数、频散系数、弹性模量及应变比等参数均可有效地区分乳腺良恶性肿瘤,其中肿瘤边缘2 mm区域与瘤体的参数比值Shell/T-Vmean、Shell/T-Dmean、Shell/T-Emean、Strain Ratio A为较佳预测指标,曲线下面积分别为0.742、0.745、0.726、0.705,而BI-RADS模型预测乳腺肿瘤良恶性的0.822。将Shell/T-Vmean、Shell/T-Dmean分别与BI-RADS分类联合时,受试者操作特征曲线的曲线下面积高达0.895(95%CI为0.868~0.917),高于BI-RADS。结论:超声黏弹性成像的黏弹性参数中,肿瘤边缘2 mm区域与瘤体的黏性系数、频散系数及弹性模量均值比为关键诊断指标;Shell/T-Vmean、Shell/T-Dmean联合BI-RADS后,可为术前无创精准诊断提供了新策略。
中图分类号:
覃雨, 李程, 华晴, 张慧婷, 贾宛儒, 董屹婕, 周建桥, 夏蜀珺. 超声黏弹性成像在乳腺肿瘤良恶性鉴别中的研究[J]. 诊断学理论与实践, 2025, 24(02): 194-203.
QIN Yu, LI Cheng, HUA Qing, ZHANG Huiting, JIA Wanru, DONG Yijie, ZHOU Jianqiao, XIA Shujun. Ultrasound viscoelastic imaging in differentiation of benign and malignant breast tumors[J]. Journal of Diagnostics Concepts & Practice, 2025, 24(02): 194-203.
表 1
717例病例的病理结果
| Item | Number (%) | |
|---|---|---|
| Benign/Malignant | ||
| Malignant | 471 | (65.69) |
| Benign | 246 | (34.31) |
| Pathological type | ||
| Adenosis | 64 | (8.93) |
| Fibroadenoma | 93 | (12.97) |
| Intraductal papilloma | 52 | (7.25) |
| Other benign lesions | 33 | (4.60) |
| Borderline tumor | 6 | (0.84) |
| Ductal carcinoma in situ | 55 | (7.67) |
| Lobular carcinoma in situ | 8 | (1.12) |
| Invasive papillary carcinoma | 17 | (2.37) |
| Invasive ductal carcinoma | 334 | (46.58) |
| Invasive lobular carcinoma | 15 | (2.09) |
| Neuroendocrine tumor | 2 | (0.28) |
| Mucinous carcinoma | 13 | (1.81) |
| Mucinous carcinoma | 25 | (3.49) |
表2
超声黏性、弹性变量对乳腺肿瘤良恶性的单因素分析
| Item | Total (N= 717) | Benign(n= 246) | Malignant(n= 471) | P-value |
|---|---|---|---|---|
| Age | 52.49±14.05 | 45.00 ± 13.17 | 56.40 ± 12.86 | <0.001 |
| BI-RADS | <0.001 | |||
| 4B and above | 516(71.97%) | 73(29.67%) | 443(94.06%) | |
| Below 4B | 201(28.03%) | 173(70.33%) | 28(5.94%) | |
| T-Emean | 25.93±14.65 | 23.12±13.30 | 27.40±15.12 | <0.001 |
| T-Emax | 126.63±84.63 | 90.34± 64.77 | 145.58±87.61 | <0.001 |
| T-Esd | 16.83 ± 11.33 | 12.83 ± 8.56 | 18.92 ±12.02 | <0.001 |
| Shell-Emean | 30.25 ±16.93 | 23.36 ±13.24 | 33.85 ± 17.53 | <0.001 |
| Shell-Emax | 139.84±85.38 | 98.11± 66.43 | 161.63±86.12 | <0.001 |
| Shell-Esd | 21.26 ± 13.57 | 15.18± 10.11 | 24.44 ± 14.06 | <0.001 |
| A-Emean | 27.74 ± 14.78 | 23.41± 12.85 | 30.00 ± 15.22 | <0.001 |
| A-Emax | 151.54±90.95 | 107.56±72.52 | 174.50±91.20 | <0.001 |
| A-Esd | 19.58 ± 12.02 | 14.56 ± 9.28 | 22.20 ± 12.46 | <0.001 |
| Shell/T-Emean | 1.21 ± 0.33 | 1.05 ± 0.27 | 1.29 ± 0.33 | <0.001 |
| Shell/T-Emax | 1.24 ± 0.59 | 1.22 ± 0.64 | 1.24 ± 0.56 | 0.400 |
| Shell/T-Esd | 1.37 ± 0.53 | 1.27 ± 0.55 | 1.42 ± 0.52 | <0.001 |
| T-Vmean | 1.74 ± 0.89 | 1.77 ± 0.87 | 1.72 ± 0.90 | 0.400 |
| T-Vmax | 8.15 ± 4.78 | 6.60 ± 3.92 | 8.95 ± 4.99 | <0.001 |
| T-Vsd | 1.15±0.71 | 1.02 ± 0.61 | 1.22 ± 0.75 | <0.001 |
| Shell-Vmean | 2.07±1.00 | 1.80 ± 0.85 | 2.21 ± 1.04 | <0.001 |
| Shell-Vmax | 8.97±4.77 | 7.10 ± 4.00 | 9.95 ± 4.85 | <0.001 |
| Shell-Vsd | 1.46±0.85 | 1.18 ± 0.69 | 1.60 ± 0.90 | <0.001 |
表4
各模型良恶性鉴别的预测价值
| Model | AIC | AUC | 95%CI |
|---|---|---|---|
BI-RADS combined with viscoelastic model |
546.862 | 0.895 | 0.868-0.917 |
| BI-RADS model | 586.959 | 0.822 | 0.790-0.853 |
| Viscoelastic combined model | 788.584 | 0.755 | 0.718-0.789 |
| Shear wave univariate model | 830.377 | 0.726 | 0.685-0.764 |
| Strain univariate model | 848.274 | 0.705 | 0.663-0.744 |
| [1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3): 209-249. |
| [2] | CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J].CA Cancer J Clin,2016,66(2): 115-132. |
| [3] | FELDMANN A, LANGLOIS C, DEWAILLY M, et al. Shear wave elastography (SWE): an analysis of breast lesion characterization in 83 breast lesions[J].Ultrasound Med Biol,2015,41(10): 2594-2604. doi:10.1016/j.ultrasmedbio.2015.05.019pmid:26159068 |
| [4] | RICCI P, MAGGINI E, MANCUSO E, et al. Clinical application of breast elastography: state of the art[J].Eur J Radiol,2014,83(3): 429-37. doi:10.1016/j.ejrad.2013.05.007pmid:23787274 |
| [5] | SIGRIST R M S, LIAU J, KAFFAS A E, et al. Ultrasound elastography: review of techniques and clinical applications[J].Theranostics,2017,7(5): 1303-1329. doi:10.7150/thno.18650pmid:28435467 |
| [6] | SHIINA T, NIGHTINGALE K R, PALMERI M L, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology[J].Ultrasound Med Biol,2015,41(5):1126-1147. doi:10.1016/j.ultrasmedbio.2015.03.009pmid:25805059 |
| [7] | KUMAR V, DENIS M, GREGORY A, et al. Viscoelastic parameters as discriminators of breast masses: Initial human study results[J].PLoS One,2018,13(10): e0205717. |
| [8] | LI W, JIANG J, CAO J, et al. The value of ultrasound viscosity imaging in preoperative differential diagnosis between malignant and benign breast lesions: Preliminary clinical applications[J].Clin Hemorheol Microcirc,2025,89(1):111-122. doi:10.3233/CH-242405pmid:39911120 |
| [9] | American College of Radiology.ACR BI-RADS atlas: breast imaging reporting and data system[M].5th ed, Reston, Virginia,2013. |
| [10] | JIA W, XIA S, JIA X, et al. Ultrasound Viscosity Imaging in Breast Lesions: A Multicenter Prospective Study[J].Acad Radiol,2024,31(9): 3499-510. doi:10.1016/j.acra.2024.03.017pmid:38582684 |
| [11] | MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: Principles, guidelines, and terminology[J].Magn Reson Med,2021,85(5): 2377-2390. doi:10.1002/mrm.28627pmid:33296103 |
| [12] | SHI Y, QI Y F, LAN G Y, et al. Three-dimensional MR elastography depicts liver inflammation, fibrosis, and portal hypertension in chronic hepatitis B or C[J].Radio-logy,2021,301(1): 154-162. |
| [13] | TAPPER E B, LOOMBA R. Noninvasive imaging biomarker assessment of liver fibrosis by elastography in NAFLD[J].Nat Rev Gastroenterol Hepatol,2018,15(5): 274-282. doi:10.1038/nrgastro.2018.10pmid:29463906 |
| [14] | PATEL B K, SAMREEN N, ZHOU Y, et al. MR elastography of the breast: evolution of technique, case examples, and future directions[J].Clin Breast Cancer,2021,21(1): e102-e111. doi:10.1016/j.clbc.2020.08.005pmid:32900617 |
| [15] | CHEN S, SANCHEZ W, CALLSTROM M R, et al. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force[J].Radiology,2013,266(3): 964-970. doi:10.1148/radiol.12120837pmid:23220900 |
| [16] | SUGIMOTO K, MORIYASU F, OSHIRO H, et al. The role of multiparametric US of the liver for the evaluation of nonalcoholic steatohepatitis[J].Radiology,2020,296(3): 532-540. doi:10.1148/radiol.2020192665pmid:32573385 |
| [17] | LEE D H, LEE J Y, BAE J S, et al. Shear-wave dispersion slope from US shear-wave elastography: detection of allograft damage after liver transplantation[J].Radiology,2019,293(2): 327-333. doi:10.1148/radiol.2019190064pmid:31502939 |
| [18] | HOSSAIN M M, SELZO M R, HINSON R M, et al. Evaluating renal transplant status using viscoelastic response (VisR) Ultrasound[J].Utrasound Med Biol,2018,44(8): 1573-1584. |
| [19] | SADIGH G, CARLOS R C, NEAL C H, et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis[J].Breast Cancer Res Treat,2012,134(3): 923-931. |
| [20] | BERG W A, COSGROVE D O, DORé C J, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses [J].Radiology,2012,262(2): 435-449. doi:10.1148/radiol.11110640pmid:22282182 |
| [21] | ZHANG H, GUO Y, ZHOU Y, et al. Fluidity and elasticity form a concise set of viscoelastic biomarkers for breast cancer diagnosis based on Kelvin-Voigt fractional derivative modeling[J].Biomech Model Mechanobiol,2020,19(6): 2163-2177. |
| [22] | MIERKE C T. Viscoelasticity acts as a marker for tumor extracellular matrix characteristics[J].Front Cell Dev Biol,2021,9: 785138. |
| [23] | ZHOU J, ZHAN W, CHANG C, et al. Breast lesions: evaluation with shear wave elastography, with special emphasis on the "stiff rim" sign[J].Radiology,2014,272(1): 63-72. doi:10.1148/radiol.14130818pmid:24661245 |
| [24] | PARK H S, SHIN H J, SHIN K C, et al. Comparison of peritumoral stromal tissue stiffness obtained by shear wave elastography between benign and malignant breast lesions[J].Acta Radiol,2018,59(10): 1168-1175. doi:10.1177/0284185117753728pmid:29359949 |
| [25] | 王艳萍, 唐笛娇, 努尔比耶·买买提依力, 等. 血清抗着丝粒蛋白F抗体在乳腺癌中的临床价值探讨 [J].重庆医科大学学报,2024,49(9): 1188-1192. |
| WANG Y P, TANG D J, NUERBIYE·M, et al. Clinical value of serum anti-centromere protein F antibody in breast cancer[J].J Chongqing Med Univ,2024,49(9): 1188-1192. | |
| [26] | SRIDHAR M, INSANA M F. Ultrasonic measurements of breast viscoelasticity[J].Med Phys,2007,34(12): 4757-4767. pmid:18196803 |
| [1] | 闫冰, 王海飞, 曹云云, 牛建梅.乳腺黏液腺癌超声声像图特征与临床病理分型的对照及误诊分析[J]. 诊断学理论与实践, 2020, 19(04): 386-390. |
| [2] | 夏冰清, 柴维敏.磁共振扩散加权成像在乳腺疾病诊治中的应用进展[J]. 诊断学理论与实践, 2016, 15(05): 528-531. |
| [3] | 赵华丽, 柴维敏, 汪登斌, 李蔚, 陈克敏,.乳腺良、恶性病变的磁共振成像误诊分析[J]. 诊断学理论与实践, 2009, 8(03): 309-313. |
| [4] | 杨莉, 何奇, 王啸, 胡修全,.Ki-67、C-erbB-2、P53蛋白在乳腺癌组织中的表达及其临床意义[J]. 诊断学理论与实践, 2009, 8(01): 87-90. |
| [5] | 陆采葑, 王晓颖, 须薇薇, 吴敏, 张仁元, 袁平,.恶性乳腺腺肌上皮瘤1例报告及文献复习[J]. 诊断学理论与实践, 2007, 6(06): 533-535. |
| [6] | 于琦, 牛昀, 方志沂,.X染色体的克隆性分析及其在乳腺肿瘤研究中的应用[J]. 诊断学理论与实践, 2005, 4(06): 510-512. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||