博士,2017,佐治亚理工学院
Ph.D., 2017, Georgia Institute of Technology
图论
2013-2017 Georgia Institute of Technology, Ph.D., Algorithms, Combinatorics, Optimization
2010-2013 Ecole Polytechnique, M.Sc./Engineer degree, Mathematics
2006-2010 Shanghai Jiao Tong University, B.Sc.
[15]Yan Wang, Rong Wu; Graphs with girth 9 and without longer odd holes are 3-colourable,Journal of Graph Theory, 2024; 106, 871-886.
[14]Yan Wang, Hehui Wu; Graph partitions under average degree constraint,Journal of Combinatorial Theory, Series B, 2024; 165, 197–210.
[13]Yan Wang; Rainbow clique subdivisions,European Journal of Combinatorics, 2024; 116, 103868.
[12]Hongliang Lu, Yan Wang, Xingxing Yu; Co-degree threshold for rainbow perfect matchings in uniform hypergraphs,Journal of Combinatorial Theory,Series B, 2023; 163, 83-111.
[11] Yan Wang; Balanced subdivisions of a large clique in graphs with high average degree,SIAM Journal on Discrete Mathematics, 2023; 37 (2), 1262-1274.
[10] Hongliang Lu, Yan Wang, Xingxing Yu; A better bound on the size of rainbow matchings,Journal of Combinatorial Theory, Series A, 2023; 195: 105700.
[9]Hongliang Lu, Yan Wang, Xingxing Yu; Rainbow perfect matchings for 4-uniform hypergraphs,SIAM Journal on Discrete Mathematics, 2022; 36 (3): 1645-1662.
[8]Dawei He, Yan Wang, Xingxing Yu; The Kelmans-Seymour conjecture I: Special separations,Journal of Combinatorial Theory, Series B, 2020; 144: 197-224.
[7]Dawei He, Yan Wang, Xingxing Yu; The Kelmans-Seymour conjecture II: 2-vertices in K4-;Journal of Combinatorial Theory, Series B; 2020; 144: 225-264.
[6]Dawei He, Yan Wang, Xingxing Yu; The Kelmans-Seymour conjecture III: 3-vertices in K4-;Journal of Combinatorial Theory, Series B; 2020; 144: 265-308.
[5]Dawei He; Yan Wang; Xingxing Yu; The Kelmans-Seymour conjecture IV: A proof,Journal of Combinatorial Theory, Series B, 2020; 144: 309-358.
[4]Rose McCarty, Yan Wang, Xingxing Yu; 7-Connected graphs are 4-ordered,Journal of Combinatorial Theory, Series B, 2020; 141: 115-135.
[3]Hongliang Lu, Yan Wang, Xingxing Yu; Minimum codegree condition for perfect matchings in k-partite k-graphs,Journal of Graph Theory, 2019; 92(3): 207-229.
[2]Hongliang Lu, Yan Wang, Xingxing Yu; Almost perfect matchings in k-partite k-graphs,SIAM Journal on Discrete Mathematics, 2018; 32(1): 522-533.
[1]Yan Wang, Qiqin Xie, Xingxing Yu, Induced forests in bipartite planar graphs.Journal of Combinatorics, 2017; 8(1): 93-166.