
CAI JUNMENG
Associate Professor
Department of Environment and Resource
Email:jmcai@sjtu.edu.cn
Office:Room 2-407, School of Agriculture and Agriculture and Biology
Research Interests
1. Biomass thermochemical conversion
2. Chemical kinetics
3. Bio-bitumen
4. Computational fluid dynamics modelling & process simulation, Biomass supply chain
Education
Ph.D. in Power Machinery and Engineering, University of Shanghai for Science and Technology, Shanghai, 2006
M.S. in Oil & Gas Storage and Transportation, China University of Petroleum (East China), Dongying, Shandong Province, 2003
B.S. in Oil & Gas Storage and Transportation, China University of Petroleum (East China), Dongying, Shandong Province, 2000
Main achievements
Dr. Cai is a young scientist in the area of biomass thermochemical conversion. He has an international research background across China, USA and UK with an internationally recognized track record of publications in the fields of Energy & Fuels, Chemistry, and Chemical Engineering. He is a renowned specialist who has a strong background of research related to Agricultural Engineering and Environmental Science and Engineering. Such areas include (but not limited to) (1) biomass pyrolysis for biofuel and chemicals; (2) development and analysis of isoconversional methods and distributed activation energy model for kinetics modelling of biomass thermochemical conversion; (3) upgrading and applications of pyrolysis liquid and (4) biomass supply chain.
Dr. Cai's research potential has been proven by a series of high-quality academic journal papers, professional awards and national and international research projects including those sponsored by the National Natural Science Foundation of China and British Academy. His citation records (total number of citations: 1665, h-index: 25, from Google Scholar as of March 9, 2019) reflect his quality of contribution to his decorated research area.
Publications:
1. Huang, B.; Xie, X.; Yang, Y.; Rahman, M. M.; Zhang, X.; Yu, X.; Blanco, P. H.; Dong, Z.; Zhang, Y.; Bridgwater, A. V.;Cai, J., Reaction chemistry and kinetics of corn stalk pyrolysis without and with Ga/HZSM-5.Journal of Thermal Analysis and Calorimetry2018, doi: 10.1007/s10973-018-7962-8.
2. He, Y.; Bie, Y.; Lehtonen, J.; Liu, R.;Cai, J., Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: Process optimization and reaction kinetics.Fuel2019, 239 (1), 1015-1027.
3. Wang, L.; Chai, M.; Liu, R.;Cai, J., Synergetic effects during co-pyrolysis of biomass and waste tire: A study on product distribution and reaction kinetics.Bioresource Technology2018, 268, 363-370.
4. Rahman, M. M.; Liu, R.;Cai, J.,Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil - A review.Fuel Processing Technology2018, 180, 32-46.
5. Xu, D.; Chai, M.; Dong, Z.; Rahman, M. M.;Cai, J., Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis.Bioresource Technology2018, 265, 139-145.
6. Dong, Z.; Yang, Y.; Cai, W.; He, Y.; Chai, M.; Liu, B.; Yu, X.; Zhang, X.; Bridgwater, A. V.; Cai, J., Theoretical Analysis of Double logistic distributed activation energy for thermal decomposition kinetics of solid fuels.Industrial & Engineering Chemistry Research2018, 57, 7817-7825.
7. Yang, Y.; Zhang, Y.; Omairey, E.;Cai, J.; Gu, F.; Bridgwater, A.V., Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen.Journal of Cleaner Production2018, 187 (20), 390-399.
8. Dong, Z.;Cai, J.,Isoconversional kinetic analysis of sweet sorghum bagasse pyrolysis by modified logistic mixture model.Journal of the Energy Institute2018, 91 (4), 513-518.
9. Cai, W.; Liu, R.; He, Y.; Chai, M.;Cai, J., Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor.Fuel Processing Technology2018, 171, 308-317.
10.Cai, J.;Xu, D.; Dong, Z.; Yu, X.; Yang, Y.; Banks, S.W.; Bridgwater, A.V., Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk.Renewable and Sustainable Energy Reviews2018, 82 (3), 2705-2715.
11. Dong, Z.; Xie, L.; Yang, Y.; Bridgwater, A.V.;Cai, J.,Local sensitivity analysis of kinetic models for cellulose pyrolysis.Waste and Biomass Valorization2017, doi: 10.1007/s12649-017-0097-5.
12.Cai, J.; He, Y.; Yu, X.; Banks, S. W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A. V., Review of physicochemical properties and analytical characterization of lignocellulosic biomass.Renewable & Sustainable Energy Reviews2017, 76, 309-322.
13.Cai, J.; Yang, Y.; Cai, W.; Bridgwater, T., Drying kinetic analysis of municipal solid waste using modified Page model and pattern search method.Waste and Biomass Valorization2017,8, (2), 301-312.
14. Yu, Y.; Yang, Y.; Cheng Z.; Blanco, P. H.; Liu, R.; Bridgwater, A. V.;Cai, J., Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures.Energy & Fuels2016, 30, (12), 10568-105574.
15. Yu, Y.; Fu, X.; Yu, L.; Liu, R.;Cai, J., Combustion kinetics of pine sawdust biochar: Data smoothing and isoconversional kinetic analysis.Journal of Thermal Analysis and Calorimetry2016,124, (3), 1641-1649.
16.Cai, J.;Liu, R.; Xiong, J.; Cui, Q., A new five-parameter logistic model for describing the evolution of energy consumption.Energy Sources, Part B: Economics, Planning, and Policy2016,11, (2), 176-181.
17.Cai, J.;Banks, S. W.; Yang, Y.; Darbar, S.; Bridgwater, A. V., Viscosity of Aged Bio-Oils from Fast Pyrolysis of Beech Wood and Miscanthus: Shear Rate and Temperature Dependence.Energy & Fuels2016, 30, (6), 4999–5004.
18. Wu, W.; Mei, Y.; Zhang, L.; Liu, R.;Cai, J.,Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste.Fuel2015,156, (5), 71-80.
19. Huang, L.; Ding, T.; Liu, R.;Cai, J.,Prediction of concentration profiles and theoretical yields in lignocellulosic biomass pyrolysis.Journal of Thermal Analysis and Calorimetry2015,120, (2), 1473-1482.
20. Cheng, Z.; Wu, W.; Ji, P.; Zhou, X.; Liu, R.;Cai, J.,Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes.Journal of Thermal Analysis and Calorimetry2015,119, (2), 1429-1438.
21. Chen, T.;Cai, J.; Liu, R., Combustion Kinetics of Biochar from Fast Pyrolysis of Pine Sawdust: Isoconversional Analysis.Energy Sources, Part A: Recovery, Utilization, and Environmental Effects2015, 37, (20), 2208-2217.
22. Zhang, L.; Liu, R.; Yin, R.; Mei, Y.;Cai, J.,Optimization of a Mixed Additive and its Effect on Physicochemical Properties of Bio-Oil.Chemical Engineering & Technology2014,37, (7), 1181-1190.
23. Wu, W.; Mei, Y.; Zhang, L.; Liu, R.;Cai, J., Effective Activation Energies of Lignocellulosic Biomass Pyrolysis.Energy & Fuels2014,28, (6), 3916-3923.
24.Cai, J.; Wu, W.; Liu, R., An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass.Renewable and Sustainable Energy Reviews2014, 36, 236-246.
25.Cai, J.;Chen, Y.; Liu, R., Isothermal kinetic predictions from nonisothermal data by using the iterative linear integral isoconversional method.Journal of the Energy Institute2014, 87, (3), 183-187.
26. Wu, W.;Cai, J.;Liu, R., Isoconversional kinetic analysis of distributed activation energy model processes for pyrolysis of solid fuels.Industrial & Engineering Chemistry Research2013,52, (40), 14376-14383.
27.Cai, J.; Wu, W.; Liu, R.; Huber, G. W., A distributed activation energy model for the pyrolysis of lignocellulosic biomass.Green Chemistry2013,15, (5), 1331-1340.
28.Cai, J.;Wu, W.; Liu, R., Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.Bioresource Technology2013, 132, 423-426.
29.Cai, J.;Wu, W.; Liu, R., Isoconversional kinetic analysis of complex solid-state processes: Parallel and successive reactions.Industrial & Engineering Chemistry Research2012, 51, (49), 16157-16161.
30.Cai, J.; Chen, Y., Iterative linear integral isoconversional method: Theory and application.Bioresource Technology2012,103, (1), 309-312.
31. Chen, S.;Cai, J., Thermal decomposition kinetics of sweet sorghum bagasse analysed by model free methods.Journal of the Energy Institute2011,84, (1), 1-4.
32.Cai, J.; Li, T.; Liu, R., A critical study of the Miura–Maki integral method for the estimation of the kinetic parameters of the distributed activation energy model.Bioresource Technology2011,102, (4), 3894-3899.
33.Cai, J.; Yang, S.; Li, T., Logistic distributed activation energy model–Part 2: Application to cellulose pyrolysis.Bioresource Technology2011,102, (3), 3642-3644.
34.Cai, J.; Jin, C.; Yang, S.; Chen, Y., Logistic distributed activation energy model–Part 1: Derivation and numerical parametric study.Bioresource Technology2011,102, (2), 1556-1561.
35.Cai, J.;Han, D.; Chen, Y.; Chen, S., Evaluation of realistic 95% confidence intervals for the activation energy calculated by the iterative linear integral isoconversional method.Chemical Engineering Science2011,66, (12), 2879-2882.
36.Cai, J.; Han, D.; Chen, C.; Chen, S., Application of the golden section search algorithm in the nonlinear isoconversional calculations to the determination of the activation energy from nonisothermal kinetic conversion data.Solid State Sciences2010,12, (5), 829-833.
37. Deng, C.;Cai, J.; Liu, R., Kinetic analysis of solid-state reactions: Evaluation of approximations to temperature integral and their applications.Solid State Sciences2009,11, (8), 1375-1379.
38.Cai, J.; Liu, R., On evaluate of the integral methods for the determination of the activation energy.Journal of Thermal Analysis and Calorimetry2009, 96, (1), 331-333.
39.Cai, J.;Liu, R., Kinetic analysis of solid-state reactions: a general empirical kinetic model.Industrial & Engineering Chemistry Research2009,48, (6), 3249-3253.
40.Cai, J.; Chen, S., A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree.Journal of Computational Chemistry2009,30, (13), 1986-1991.
41.Cai, J.; Bi, L., Kinetic analysis of wheat straw pyrolysis using isoconversional methods.Journal of Thermal Analysis and Calorimetry2009,98, (1), 325-330.
42.Cai, J.;Liu, R.; Sun, C., Logistic regression model for isoconversional kinetic analysis of cellulose pyrolysis.Energy & Fuels2008,22, (2), 867-870.
43.Cai, J.; Liu, R.; Shen, F., Improved version of Doyle integral method for nonisothermal kinetics of solid-state reactions.Journal of Mathematical Chemistry2008,43, (3), 1127-1133.
44.Cai, J.; Liu, R.; Shen, F., Dependence of the frequency factor on temperature: The relationship between the reaction extent at the maximum reaction rate and the reaction mechanism.Solid State Sciences2008,10, (2), 226-231.
45.Cai, J.; Liu, R.; Huang, C., Kinetic analysis of nonisothermal solid-state reactions: Determination of the kinetic parameters by means of a nonlinear regression method.Journal of Mathematical Chemistry2008, 44, (2), 551-558.
46.Cai, J.;Liu, R.; Deng, C., An assessment of biomass resources availability in Shanghai: 2005 analysis.Renewable and Sustainable Energy Reviews2008,12, (7), 1997-2004.
47.Cai, J.; Liu, R., Kinetic analysis of solid-state reactions: errors involved in the determination of the kinetic parameters calculated by one type of integral methods.Journal of Mathematical Chemistry2008, 43, (3), 914-920.
48.Cai, J.; Liu, R., An improved version of Junmeng–Fang–Weiming–Fusheng approximation for the temperature integral.Journal of Mathematical Chemistry2008, 43, (3), 1193-1198.
49.Cai, J.; Liu, R., Non-isothermal kinetics in solids: The precision of some integral methods for the determination of the activation energy without neglecting the temperature integral at the starting temperature.Journal of Thermal Analysis and Calorimetry2008,94, (1), 313-316.
50.Cai, J.;Liu, R., Precision of integral methods for the determination of the kinetic parameters.Journal of Thermal Analysis and Calorimetry2008,91, (1), 275-278.
51.Cai, J.;Liu, R., Kinetic analysis of solid-state reactions: Precision of the activation energy obtained from one type of integral methods without neglecting the low temperature end of the temperature integral.Solid State Sciences2008, 10, (5), 659-663.
52.Cai, J.; Liu, R., Dependence of the frequency factor on the temperature: A new integral method of nonisothermal kinetic analysis.Journal of Mathematical Chemistry2008,43, (2), 637-646.
53.Cai, J.; Liu, R., New distributed activation energy model: Numerical solution and application to pyrolysis kinetics of some types of biomass.Bioresource Technology2008,99, (8), 2795-2799.
54.Cai, J.;Chen, S., Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition.Drying Technology2008,26, (12), 1464-1468.
55.Cai, J.; Bi, L., Precision of the Coats and Redfern method for the determination of the activation energy without neglecting the low-temperature end of the temperature integral.Energy & Fuels2008, 22, (4), 2172-2174.
56.Cai, J.; Alimujiang, S., Kinetic analysis of wheat straw oxidative pyrolysis using thermogravimetric analysis: statistical description and isoconversional kinetic analysis.Industrial & Engineering Chemistry Research2008,48, (2), 619-624.
57.Cai, J. M.; Liu, R. H., New approximation for the general temperature integral.Journal of Thermal Analysis and Calorimetry2007, 90, (2), 469-474.
58.Cai, J.;Liu, R.; Wang, Y., Kinetic analysis of solid-state reactions: A new integral method for nonisothermal kinetics with the dependence of the preexponential factor on the temperature (A=A0Tn).Solid State Sciences2007,9, (5), 421-428.
59.Cai, J.; Liu, R.; Deng, C.; Shen, F., Amount, availability and potential uses for energy of agricultural residues in Mainland China.Journal of the Energy Institute2007, 80, (4), 243-246.
60.Cai, J.;Liu, R., Parametric study of the nonisothermalnth-order distributed activation energy model involved the Weibull distribution for biomass pyrolysis.Journal of Thermal Analysis and Calorimetry2007,89, (3), 971-975.
61.Cai, J.; Liu, R., Errors involved in the activation energy calculated by integral methods when the frequency factor depends on the temperature (A=A0Tm).Journal of Thermal Analysis and Calorimetry2007,90, (2), 459-462.
62.Cai, J.;Liu, R., Application of Weibull 2-mixture model to describe biomass pyrolysis kinetics.Energy & Fuels2007,22, (1), 675-678.
63.Cai, J.; Liu, R., Research on water evaporation in the process of biomass pyrolysis.Energy & Fuels2007,21, (6), 3695-3697.
64.Cai, J.; Liu, R., Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: Application to simulated and real kinetic conversion data.Journal of Physical Chemistry B2007,111, (36), 10681-10686.
65.Cai, J.;Ji, L., Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass.Journal of Mathematical Chemistry2007,42, (3), 547-553.
66.Cai, J.;He, F.; Yao, F., Nonisothermalnth-order DAEM equation and its parametric study–use in the kinetic analysis of biomass pyrolysis.Journal of Mathematical Chemistry2007,42, (4), 949-956.
67.Cai, J.;He, F.; Yi, W.; Yao, F., A new formula approximating the Arrhenius integral to perform the nonisothermal kinetics.Chemical Engineering Journal2006,124, (1), 15-18.
68.Cai, J.;He, F., Letter to the editor.AIChE Journal2006,52, (7), 2656-2656.
69.Cai, J.; Yao, F.; Yi, W.; He, F., New temperature integral approximation for nonisothermal kinetics.AIChE Journal2006,52, (4), 1554-1557.
Awards:
2018 - Outstanding Reviewer of Renewable and Sustainable Energy Reviews
2017 - School of Agriculture and Biology, Shanghai Jiao Tong University, Excellent Guide Teacher Award in the 2nd Green Valley Scientific and Technological Innovation Activities for Undergraduate Students.
2017 - Outstanding Reviewer of Fuel Processing Technology
2015 - Key Laboratory of Urban Agriculture (South), Ministry of Agriculture - the Award of Research Achievements
2013 - Shanghai Jiao Tong University - the Jinlongyu Young Faculty Award
2011 - School of Agriculture and Biology, Shanghai Jiao Tong University - the Award for Fostering Young Talents
2011 - Shanghai Jiao Tong University - the Prize for the Outstanding Contribution of Undergraduate Innovation Program
2009 - Shanghai Jiao Tong University - the Excellent Young Faculty Award B of SMC Chenxing Scholars Program
2008 - Shanghai Jiao Tong University - the Second Prize for Outstanding Young Faculty Reserve Talents of SMC Chenxing Scholars Program
Others
Website:http://biofuels.sjtu.edu.cn