29. (with R. McRae)Structure of Virasoro tensor categories at central charge 13-6p-6p^{-1} for integers p>1.
Trans. Amer. Math. Soc.,378(2025), no. 10, 7451-7509.
28. (with D. Adamovic, C. Ai and X. Lin)Simplicity of module categories of certain affine vertex operator superalgebras.
J. Alg.,682(2025), 331-359.
27. (with R. McRae)The non-semisimple Kazhdan-Lusztig category for affine sl_2 at admissible levels.
Proc. Lond. Math. Soc.,130(2025), no. 4, 83 pp.
26. (with T. Creutzig and R. McRae)Rigid tensor structure on big module categories for some W-(super)algebras in type A.
Comm. Math. Phys.,404(2023), no. 1, 339-400.
25. (with R. McRae)An sl_2-type tensor category for the Virasoro algebra at central charge 25 and applications.
Math. Z.,303(2023), no. 2, Paper No. 32, 40 pp.
24. (with T. Creutzig and R. McRae)Ribbon tensor structure on the full representation categories of the singlet vertex algebras.
Adv. Math.,413(2023), Paper No. 108828, 79 pp.
23. (with T. Creutzig and R. McRae)Tensor structure on the Kazhdan-Lusztig category for affine gl(1|1).
Int. Math. Res. Not. IMRN 2022, no. 16, 12462-12515.
22. (with T. Creutzig and R. McRae)Direct limit completions of vertex tensor categories.
Comm. Contemp. Math.24(2022), no. 2, Paper No. 2150033, 60 pp.
21. (with T. Creutzig and R. McRae)On ribbon categories for singlet vertex algebras.
Comm. Math. Phys.387(2021), no. 2, 865-925.
20. (with T. Creutzig)Tensor categories of affine Lie algebras beyond admissible levels.
Math. Ann.380(2021), no. 3-4, 1991-2040.
19. (with D. Adamovic, T. Creutzig and N. Genra)The vertex algebras R^{(p)} and V^{(p)}.
Comm. Math. Phys.383(2021), no. 2, 1207--1241.
18. (with T. Creutzig, C. Jiang, F. Orosz Hunziker and D. Ridout)Tensor categories arising from the Virasoro algebras.
Adv. Math.380(2021), Paper No. 107601, 35 pp.
17. (with K. Barron, N. Vander Werf)The level one Zhu algebra for the Virasoro vertex operator algebra.
Contemp. Math., 753, American Mathematical Society, Providence, RI, 2020, 17–43.
16. (with R. Rouquier and L. Wang)p-indecomposable decomposition and Brauer morphisms for modules.
J. Alg.558(2020), 646--659.
15. (with Z. Yun)Semilinear automorphisms of classical groups and quivers.
Sci. China Math.62(2019), no. 11, 2355--2370.
14. (with Y. Pei)Strongly graded vertex algebras generated by vertex Lie algebras.
Comm. Contemp. Math.21(2019), no. 8, 1850069, 34 pages.
13. (with K. Barron and N. Vander Werf)Higher level Zhu algebras and modules for vertex operator algebras.
J. Pure Appl. Alg.223(2019), no. 8, 3295--3317.
12. (with Y.-Z. Huang) Associative algebras and (logarithmic) twisted modules for a vertex operator algebra.
Trans. Amer. Math. Soc.371(2019), no. 6, 3747--3786.
11. (with T. Creutzig and Y.-Z. Huang)Braided tensor categories of admissible modules for affine Lie algebras.
Comm. Math. Phys.362(2018), no. 3, 827--854.
10.A sufficient condition for convergence and extension property for strongly graded vertex algebras.
In ``Vertex algebras and Geometry", Contemp. Math.,711, Amer. Math. Soc., Providence, RI, 2018, pp. 119--141.
9. (with R. McRae)Vertex algebraic intertwining operators among generalized Vermamodules for sl(2)^.
Trans. Amer. Math. Soc.370(2018), no. 4, 2351--2390.
8. (with J. Lepowsky)Twisted generating functions incorporating singularvectors in Verma modules and their localizations.
In ``Lie Algebras, Vertex Operator Algebras, and Related Topics", Contemp. Math.,695, Amer. Math. Soc., Providence,RI, 2017, pp. 149--173.
7.Twisted representations of vertex operator algebras associated to the affine Lie algebras.
J. Alg.484(2017), 88--108.
6.Differential equations and logarithmic intertwining operators for strongly graded vertex algebras.
Comm. Contempt. Math.19(2017), no. 2, 1650009, 26 pages.
5.Vertex algebras associated to the affine Lie algebras of abelian polynomial current algebras.
Int. J. Math.27(2016), no. 5, 1650046, 25 pages.
4.On associative algebras, modules and twisted modules for vertex operator algebras.
J. Alg.440(2015), 354--378.
3.(with Y.-Z. Huang)On functors between module categories for associative algebras and forN-graded vertex algebras.
J. Alg.409(2014), 344--361.
2.Tensor products of strongly graded vertex algebras and their modules.
J. Pure Appl. Alg.217(2013), no. 2, 348--363.
1. (with Y.-Z. Huang)Logarithmic intertwining operators and associative algebras.
J. Pure Appl. Alg.216(2012), no. 6, 1467--1492.